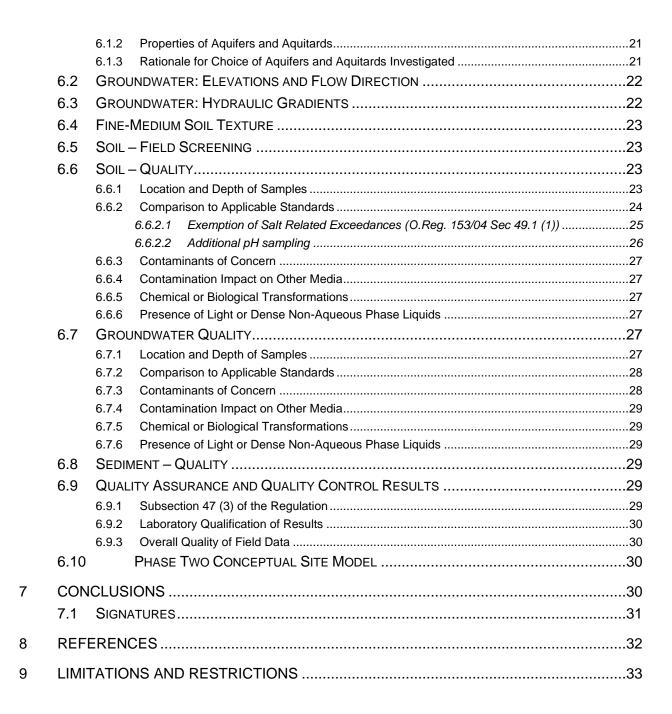


# PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

### **PREPARED FOR:** 1095 Kingston Road Limited 22 St. Clair Avenue East, Suite 1203 Toronto, Ontario M4T 2S5


**ATTENTION:** Tom Bosnjak

1095 Kingston Road | Pickering, Ontario Grounded Engineering Inc. File No. 22-279 Issued February 14, 2024



# TABLE OF CONTENTS

| 1 | EXE                     | CUTIVE SUMMARY                                                            | 5   |
|---|-------------------------|---------------------------------------------------------------------------|-----|
| 2 | INTR                    | RODUCTION                                                                 | 7   |
|   | 2.1                     | SITE DESCRIPTION                                                          | 7   |
|   | 2.2                     | PROPERTY OWNERSHIP                                                        | 7   |
|   | 2.3                     | CURRENT AND PROPOSED FUTURE USES                                          | 7   |
|   | 2.4                     | APPLICABLE SITE CONDITION STANDARD                                        |     |
| 3 | BAC                     | KGROUND INFORMATION                                                       | 8   |
| 0 | 3.1                     | PHYSICAL SETTING                                                          |     |
|   | 3.2                     | PAST INVESTIGATIONS                                                       | -   |
|   | -                       |                                                                           | -   |
| 4 |                         | PE OF THE INVESTIGATION                                                   |     |
|   | 4.1                     | OVERVIEW OF SITE INVESTIGATION                                            |     |
|   | 4.2                     | MEDIA INVESTIGATED                                                        | -   |
|   |                         | 4.2.1 Rationale for Exclusion and Inclusion of Media                      |     |
|   | 4.0                     | 4.2.2 Overview of Field Investigation of Media                            |     |
|   | 4.3                     | Phase One Conceptual Site Model                                           |     |
|   | 4.4                     | DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN                                |     |
|   | 4.5                     |                                                                           | .14 |
| 5 | INVE                    | STIGATION METHOD                                                          | .14 |
|   | 5.1                     | GENERAL                                                                   | .14 |
|   | 5.2                     | DRILLING                                                                  | .14 |
|   | 5.3                     | THE BOREHOLE LOCATIONS ARE PROVIDED IN FIGURE 4. SOIL – SAMPLING          | .15 |
|   |                         | 5.3.1 Equipment Used                                                      | 15  |
|   |                         | 5.3.2 Geological Description                                              |     |
|   | 5.4                     | SOIL – FIELD SCREENING MEASUREMENTS                                       | .15 |
|   | 5.5                     | GROUNDWATER – FIELD MEASUREMENT OF WATER QUALITY PARAMETERS               | .16 |
|   | 5.6                     | GROUNDWATER – MONITORING WELL INSTALLATION                                | .16 |
|   | 5.7                     | GROUNDWATER – SAMPLING                                                    | .16 |
|   | 5.8                     | SEDIMENT – SAMPLING1                                                      |     |
|   | 5.9                     | ANALYTICAL TESTING                                                        | .17 |
|   | 5.10                    | RESIDUE MANAGEMENT PROCEDURES                                             | .17 |
|   | 5.11                    | ELEVATION SURVEYING                                                       | .17 |
|   | 5.12                    | QUALITY ASSURANCE AND QUALITY CONTROL MEASURES                            | .17 |
|   |                         | 5.12.1 Containers, Preservation, Labelling, Handling and Chain of Custody | 17  |
|   |                         | 5.12.2 Equipment Cleaning Procedures                                      |     |
|   |                         | 5.12.3 Field Quality Control Measures and Deviations                      | 19  |
| 6 | REVIEW AND EVALUATION19 |                                                                           |     |
|   | 6.1                     | GEOLOGY                                                                   | .19 |
|   |                         | 6.1.1 Material in Geological Units                                        | 20  |





# **FIGURES**

- Figure 1 Site Location
- Figure 2 PCA Locations
- Figure 3 APEC Locations
- Figure 4 Boreholes Location Plan
- Figure 5 Groundwater Elevations and Contours
- Figure 6 Soil Sampling Locations
- Figure 7 Groundwater Sampling Locations
- Figure 8 Soil and Groundwater Sampling Locations Section A A'
- Figure 9 Soil and Groundwater Sampling Locations Section B B'
- Figure 10 Human Health Conceptual Site Model
- Figure 11 Ecological Conceptual Site Model

# TABLES

- Table 1 Groundwater Elevations
- Table 2 Summary of Soil Quality Results
  - Table 2.1 Metals, Hydride Metals, Other Regulated Parameters in Soil
  - Table 2.2 Polycyclic Aromatic Hydrocarbons in Soil
  - Table 2.3 Petroleum Hydrocarbons and Benzene, Toluene, Ethylbenzene, Xylene in Soil
  - Table 2.4 Volatile Organic Compounds and Trihalomethanes in Soil
- Table 3 Summary of Groundwater Quality Results
  - Table 3.1 Metals, Hydride Metals, Other Regulated Parameters in Groundwater
  - Table 3.2 Polycyclic Aromatic Hydrocarbons in Groundwater
  - Table 3.3 Petroleum Hydrocarbons and Benzene, Toluene, Ethylbenzene, Xylene in Groundwater
  - Table 3.4 Volatile Organic Compounds and Trihalomethanes in Groundwater

# **APPENDICES**

- Appendix A Phase One Conceptual Site Model
- Appendix B Sampling and Analysis Plan
- Appendix C Standard Field Investigation Protocol
- Appendix D Borehole Logs
- Appendix E Grain Size Analysis
- Appendix F Certificates of Analysis
- Appendix G Phase Two Conceptual Site Model



# **1** Executive Summary

1095 Kingston Road Limited retained Grounded Engineering Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 1095 Kingston Road, Pickering, Ontario (Property). The Phase Two ESA was conducted to investigate the Areas of Potential Environmental Concern (APECs) that have been identified on the Property by the Phase One ESA.

The results of the Phase Two ESA are summarized below:

| Applicable Site Condition<br>Standards                           | MECP Table 2 RPI M/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil Contaminants of Potential<br>Concern (CoPCs) Investigated   | <ul> <li>The following parameters were investigated based on the CoPCs identified in the Phase One ESA:</li> <li>Metals (M)</li> <li>Hydride-forming Metals (H-M) <ul> <li>Arsenic (As), Selenium (Se), Antimony (Sb)</li> </ul> </li> <li>Other Regulated Parameters (ORPs) <ul> <li>B-HWS, CN-, EC, SAR, Cr(VI), Hg, pH</li> </ul> </li> <li>Polycyclic Aromatic Hydrocarbons (PAHs)</li> <li>Petroleum Hydrocarbons (PHCs)</li> <li>Volatile Organic Compounds II - Benzene, Toluene, Ethylbenzene, Xylene (BTEX)</li> </ul>                                                                               |
| Groundwater CoPCs<br>Investigated                                | <ul> <li>Volatile Organic Compounds I (VOCs)</li> <li>Based on the depth to the stabilized groundwater table (beyond 5 mbgs) and potential surficial impacts from the identified potentially contaminating activities, the Phase One ESA only identified soil as media potentially impacted. However, the following parameters were analyzed for during this investigation for due diligence purposes only: <ul> <li>M</li> <li>H-M</li> <li>Other Regulated Parameters</li> <li>Cr(VI), CN-, Hg, Cl-, pH</li> </ul> </li> <li>Sodium (Na)</li> <li>PAHs</li> <li>PHCs</li> <li>BTEX</li> <li>VOCs</li> </ul> |
| Applicable Site Condition<br>Standards Met for Soil?<br>(Yes/No) | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Standards Met for<br>Groundwater? (Yes/No) |  | Yes |
|--------------------------------------------|--|-----|
|--------------------------------------------|--|-----|

A Record of Site Condition (RSC) can be filed for the Property at this time.

# 2 Introduction

# 2.1 Site Description

1095 Kingston Road Limited retained Grounded Engineering Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 1095 Kingston Road, Pickering, Ontario (Property). The Phase Two ESA was conducted to investigate the Areas of Potential Environmental Concern (APECs) that have been identified on the Property. The site location is presented in Figure 1.

The Property is irregular in shape, with a total area of 2.09016 ha. The Property is bounded by Kingston Road to the west and Dixie Road to the east. The Property is currently developed with a slab-on-grade multi-tenant commercial building surrounded by an asphalt surface parking lot. The Property is considered to be in commercial land use as defined by the Ministry of the Environment, Conservation and Parks (MECP) Ontario Regulation (O.Reg.) 153/04.

# 2.2 Property Ownership

| Municipal Address          | 1095 Kingston Road, Pickering, Ontario, L1V 1B5                                                                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legal Description          | PT LT 25 CON 1 PICKERING PTS 1, 2 & 3, 40R1860 EXCEPT PT 1, 40R2670<br>AND CO210581; S/T D486756, *S/T D19631* AS PARTIALLY RELEASED BY<br>D314762; PICKERING. *ADDED 2000 03 13 BY T.CUTLER |
| PIN(s)                     | 26317-0068 (LT)                                                                                                                                                                              |
| Current Land Use           | Commercial                                                                                                                                                                                   |
| Property Owner Information | 1095 Kingston Road Ltd.                                                                                                                                                                      |

The Property information is provided below:

# 2.3 Current and Proposed Future Uses

The Property is considered to be in commercial land use as defined by the Ministry of the Environment, Conservation and Parks (MECP) Ontario Regulation (O.Reg.) 153/04.

It is understood that the Phase Two Property will be developed with three (3) new residential highrise buildings with a 3-storey podium structure, constructed in two phases; Phase 1 comprising Towers 1 and 2 with a combined podium on the south side of the Property, and Phase 2 comprising Tower 3 with a separate podium structure on the north side of the Property. It is understood that consideration is being given to two (2) or three (3) levels of below grade parking beneath each of the phases (P2 or P3), or alternatively constructing the development on-grade with above-grade parking only. The Property will considered to be in residential land use by the O.Reg 153/04.



# 2.4 Applicable Site Condition Standard

The applicable site condition standard for the Property was determined to be the Table 2 Full Depth Generic Site Condition Standards for Use in a Potable Ground Water Condition for Residential/Parkland/Institutional for medium to fine-textured soil due to the following reasons:

| Current Land Use                                                                                          | Commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Future Land Use                                                                                           | Residential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Soil Texture                                                                                              | Medium to fine based on grain size analysis performed on the soil.<br>Based on the results of 7 grain size analyses, all soil samples contained 50<br>percent or more by mass of particles that are smaller than 75 micrometres in<br>mean diameter. As such, the qualified person has determined that less than<br>1/3 of the soil at the property, measured by volume, consists of coarse<br>textured soil, and therefore the qualified person has applied the standard for<br>medium and fine textured soil. |
| Potable Water Source                                                                                      | Municipal service/municipal water supply is from s combination of regional groundwater supply wells and surface water sources.                                                                                                                                                                                                                                                                                                                                                                                  |
| Bedrock Depth                                                                                             | Bedrock is located at a depth of greater than 2 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Property located within 30 m of a surface water body (Yes/No)                                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Property located in or adjacent<br>to a provincial park or an Area<br>of Natural Significance<br>(Yes/No) | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# **3 Background Information**

# 3.1 Physical Setting

The Ministry of Natural Resources and Forestry (MNRF) and Ministry of Energy, Northern Development and Mines (MENDM) database were searched to obtain topographic and geological maps of Ontario for review. The information obtained are summarized below:

| Records          | Information                                                                                                                                                                                                                                                       |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topographic Maps | The approximate elevation of the Property is 90 meters above sea level (masl).<br>The Property is generally flat with a gentle slope towards the south.                                                                                                           |
| Hydrology        | The nearest surface water body is the Dunbarton Creek located approximately<br>93 m to the south (channelized section) and 180 m (open section) to the<br>southeast of the Property. Frenchman's Bay is located approximately 300 m<br>southeast of the Property. |



| Records         | Information                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Surface water is expected to flow to the municipal roads located adjacent north<br>and west of the Property. Catch basins exist to the northeast along Dixie Road,<br>north/west along Kingston Road and on the paved areas of the Property.<br>Groundwater is expected to flow locally south towards Dunbarton Creek, then<br>southeast towards Frenchman's Bay. |
|                 | Overburden:                                                                                                                                                                                                                                                                                                                                                       |
|                 | Fine-textured glaciolacustrine deposits comprised of silt and clay, and minor sand and gravel.                                                                                                                                                                                                                                                                    |
| Geological Maps | Bedrock:                                                                                                                                                                                                                                                                                                                                                          |
| Geological Maps | Collingwood Formation comprised of shale, limestone, dolostone, and siltstone.                                                                                                                                                                                                                                                                                    |
|                 | Depth to Bedrock:                                                                                                                                                                                                                                                                                                                                                 |
|                 | Based on MECP well records in the Study Area, bedrock was encountered at a depth of approximately 15.24 mbgs.                                                                                                                                                                                                                                                     |

Maps from MNRF were reviewed to determine if water bodies were present on the Property and within the Study Area. The Ontario Ministry of Natural Resources National Heritage Information Centre database for Areas of Natural or Scientific Interest (ANSIs) was also reviewed as part of the Phase One ESA. The information is summarized below:

| Water Bodies | Property:                                                                                                                                                                             |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|              | No water bodies are located on the Property.                                                                                                                                          |  |
|              | Study Area:                                                                                                                                                                           |  |
|              | <ul> <li>Dunbarton Creek is located approximately 93 m to the south (channelized section) and<br/>180 m southeast (open section) of the Property.</li> </ul>                          |  |
|              | • Frenchman's Bay is located approximately 300 m southeast to the Property.                                                                                                           |  |
| Wetlands     | Property:                                                                                                                                                                             |  |
|              | <ul> <li>No Provincially Significant, Non-Provincially Significant, and Unevaluated wetlands are<br/>located on the Property.</li> </ul>                                              |  |
|              | Study Area:                                                                                                                                                                           |  |
|              | <ul> <li>A Provincially Significant wetland (Frenchman's Bay) is located approximately 300 m<br/>southeast to the Property.</li> </ul>                                                |  |
| ANSIs        | Property:                                                                                                                                                                             |  |
|              | None of the following ANSIs were located on the Property.                                                                                                                             |  |
|              | Study Area:                                                                                                                                                                           |  |
|              | None of the following ANSIs were located within the Study Area.                                                                                                                       |  |
|              | List of ANSIs reviewed:                                                                                                                                                               |  |
|              | <ul> <li>An area reserved or set apart as a provincial park or conservation reserve under<br/>the Provincial Parks and Conservation Reserves Act, 2006.</li> </ul>                    |  |
|              | <ul> <li>An area of natural and scientific interest (life science or earth science) identified by the<br/>Ministry of Natural Resources as having provincial significance.</li> </ul> |  |



| <ul> <li>A wetland identified by the Ministry of Natural Resources as having provincial significance.</li> </ul>                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>An area designated by a municipality in its official plan as environmentally significant,<br/>however expressed, including designations of areas as environmentally sensitive, as being<br/>of environmental concern and as being ecologically significant.</li> </ul> |
| <ul> <li>An area designated as an escarpment natural area or an escarpment protection area by<br/>the Niagara Escarpment Plan under the Niagara Escarpment Planning and Development<br/>Act.</li> </ul>                                                                         |
| <ul> <li>An area identified by the Ministry of Natural Resources as significant habitat of a<br/>threatened or endangered species.</li> </ul>                                                                                                                                   |
| <ul> <li>An area which is habitat of a species that is classified under section 7 of the Endangered<br/>Species Act, 2007 as a threatened or endangered species.</li> </ul>                                                                                                     |
| <ul> <li>Property within an area designated as a natural core area or natural linkage area within<br/>the area to which the Oak Ridges Moraine Conservation Plan under the Oak Ridges<br/>Moraine Conservation Act, 2001 applies.</li> </ul>                                    |
| <ul> <li>An area set apart as a wilderness area under the Wilderness Areas Act.</li> </ul>                                                                                                                                                                                      |

The Areas of Natural Significances (ANSIs) and water bodies on or adjacent to the Property is shown in Figure 2, if present.

# 3.2 Past Investigations

The following environmental reports were provided for review for the Property. The findings of the reports are summarized below:

| Title and File No. | Phase 1 Environmental Site Assessment 1095 Kingston Road, Pickering, ON (File No. 5947-01.01) |
|--------------------|-----------------------------------------------------------------------------------------------|
| Report Date        | December 2019                                                                                 |
| Prepared By        | PGL Environmental Consultants                                                                 |
| Prepared for       | 1585708 Ontario Ltd.                                                                          |



|                                                 | <ul> <li>The Phase I ESA was completed for the purposes of due diligence for refinancing the Property.</li> <li>The Phase I ESA was generally completed in accordance with CSA Standard</li> </ul>                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | Z768-01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | <ul> <li>At the time of the site inspection completed on December 12, 2019, the Property was occupied by a two-storey multi-unit commercial building. The Property was reportedly heated by a natural gas-fired HVAC unit.</li> </ul>                                                                                                                                                                                                                                                                     |
| Description of Data,<br>Analysis or<br>Findings | <ul> <li>Hazardous materials such as motor oils, lubricants, hydraulic oil, and other various<br/>liquids used for vehicle maintenance were reportedly identified in the unit<br/>occupied by Part Source (an automotive parts retailer with retail area and storage<br/>room). However, no on-site vehicle maintenance was reportedly being completed<br/>at that time. As such, PGL considered these materials not to be an environmental<br/>risk as they were in packaging for retail use.</li> </ul> |
|                                                 | <ul> <li>There were no significant potential environmental concerns reportedly identified in<br/>the report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                 | • The report identified potential designated substances and special attention items to be considered prior to any renovation or demolition:                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | <ul> <li>Lead and asbestos in building materials</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | <ul> <li>PCBs in light ballasts</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Title and File No.      | Phase One Environmental Site Assessment 1095 Kingston Road, Pickering, Ontario. (File<br>No. 22-279)                                                                                                                                                                                                                                      |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Report Date             | January 16, 2024 (Rev. 1.0)                                                                                                                                                                                                                                                                                                               |  |
| Prepared By             | Grounded Engineering Inc.                                                                                                                                                                                                                                                                                                                 |  |
| Prepared for            | 1095 Kingston Road Ltd.                                                                                                                                                                                                                                                                                                                   |  |
|                         | <ul> <li>The Phase One ESA was completed for the purposes of due diligence during<br/>acquisition of the Property.</li> </ul>                                                                                                                                                                                                             |  |
|                         | <ul> <li>The Phase One ESA was completed in accordance with Ontario Regulation<br/>153/04.</li> </ul>                                                                                                                                                                                                                                     |  |
| Description of Data,    | <ul> <li>At the time of inspections in November 2022 and January 2024, the Property was occupied by a slab-on-grade multi-tenant commercial building (End of the Roll, Parts Source, Treehouse Club, Tasco Appliances, and Tile House) with an asphalt surface parking lot surrounding the building, reportedly built in 1975.</li> </ul> |  |
| Analysis or<br>Findings | <ul> <li>Part Source was observed to not have any on-site vehicle maintenance<br/>operations and was limited to commercial retail of automotive parts and<br/>supplies only.</li> </ul>                                                                                                                                                   |  |
|                         | <ul> <li>Interviews completed for the Phase One ESA indicated that no onsite<br/>vehicle maintenance was ever completed by this tenant historically.</li> </ul>                                                                                                                                                                           |  |
|                         | • The commercial building was reportedly heated by a natural gas-fired HVAC unit.                                                                                                                                                                                                                                                         |  |
|                         | • Due to the age and construction of the building, the presence of asbestos and lead-based paints were suspected.                                                                                                                                                                                                                         |  |



| <ul> <li>The Phase One ESA identified two (2) Areas of Potential Environmental Concern<br/>(APECs).</li> </ul>                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li><u>APEC 1 (Entire Phase One Property)</u>: associated with importation of fill<br/>material of unknown quality during the development of the Property.</li> </ul>     |  |
| <ul> <li><u>APEC 2 (Entire Phase One Property)</u>: associated with de-icing activities<br/>on the Property.</li> </ul>                                                        |  |
| <ul> <li>Based on the Phase One ESA, a Phase Two ESA was required to investigate the<br/>APECs identified prior to submission for a Record of Site Condition (RSC).</li> </ul> |  |

# 4 Scope of the Investigation

# 4.1 Overview of Site Investigation

The scope of the Phase Two ESA is as follow:

|                                   | Grounded Drilling Investigation (November 2022):                                                                                                                                                                                                                                                                                          |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                   | <ul> <li>Advancing of three (3) boreholes (BH1-BH3) to depths of 15.7 to 19.4 m below<br/>ground surface (m bgs)</li> </ul>                                                                                                                                                                                                               |  |  |  |
|                                   | Installation of three (3) monitoring wells (BH1-BH3)                                                                                                                                                                                                                                                                                      |  |  |  |
|                                   | Grounded Drilling Investigation (December 2022):                                                                                                                                                                                                                                                                                          |  |  |  |
| Boreholes and<br>Monitoring Wells | <ul> <li>Five (5) shallow boreholes (BH1A, BH1B and BH2A-BH2C) to depths of 1.5 to 3.0<br/>mbgs to confirm soil quality:</li> </ul>                                                                                                                                                                                                       |  |  |  |
|                                   | <ul> <li>BH1A and BH1B were advanced to confirm pH quality at this location see<br/>Section 4.3.3).</li> </ul>                                                                                                                                                                                                                            |  |  |  |
|                                   | • BH2A to BH2C were advanced to confirm PHC (F1-F4) concentrations at this location in the fill as this location had initially had the detectable ( <i>but not exceeding</i> ) concentrations for PHC F3 onsite, likely due to sampling error. All additional samples reported non-detectable or concentrations well below the standards. |  |  |  |
|                                   | The following parameters were investigated based on the CoPCs identified in the Phase One ESA:                                                                                                                                                                                                                                            |  |  |  |
|                                   | Grounded Drilling Investigation (November 2022):                                                                                                                                                                                                                                                                                          |  |  |  |
|                                   | • M                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                   | • H-M                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Parameters                        | o Sb, As, Se                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Investigated for                  | • ORPs                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Soil                              | <ul> <li>B-HWS, CN-, EC, SAR, Cr(VI), Hg, pH</li> </ul>                                                                                                                                                                                                                                                                                   |  |  |  |
|                                   | • PAHs                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                   | PHCs                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                   | • BTEX                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                   | • VOC                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                   | Grounded Drilling Investigation (December 2022):                                                                                                                                                                                                                                                                                          |  |  |  |



|                                               | <ul><li>ORPs (pH only)</li><li>PHCs</li></ul>                                                                                                                                                                                          |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                               | Based on the depth to the stabilized groundwater table (beyond 5 mbgs) and potential surficial impacts from the identified potentially contaminating activities, the Phase One ESA only identified soil as media potentially impacted. |  |  |
|                                               | However, the following parameters were analyzed for during this investigation for due diligence purposes only:                                                                                                                         |  |  |
|                                               | • M                                                                                                                                                                                                                                    |  |  |
| Parameters<br>Investigated for<br>Groundwater | • H-M                                                                                                                                                                                                                                  |  |  |
|                                               | o Sb, As, Se                                                                                                                                                                                                                           |  |  |
|                                               | • ORPs                                                                                                                                                                                                                                 |  |  |
|                                               | <ul> <li>Cr(VI), CN-, Hg, CI-, pH</li> </ul>                                                                                                                                                                                           |  |  |
|                                               | Sodium (Na)                                                                                                                                                                                                                            |  |  |
|                                               | • PAHs                                                                                                                                                                                                                                 |  |  |
|                                               | • PHCs                                                                                                                                                                                                                                 |  |  |
|                                               | • BTEX                                                                                                                                                                                                                                 |  |  |
|                                               | • VOC                                                                                                                                                                                                                                  |  |  |

- 7 soil samples were submitted for grain size analysis and soil classification.
- All boreholes and monitoring wells were surveyed using a Sokkia survey system.
- All new monitoring wells were developed prior to sampling.
- Groundwater level measurements were conducted in all accessible monitoring wells to determine groundwater elevation on the Property.

# 4.2 Media Investigated

### 4.2.1 Rationale for Exclusion and Inclusion of Media

| Media       | Included/Excluded | Rationale                                                                                                                                                                                                                                                                                                                    |
|-------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil        | Included          | Based on the Phase One ESA, soil sampling was required to investigate the CoPCs related to the identified APECs.                                                                                                                                                                                                             |
| Sediment    | Excluded          | Surface water bodies were not presented on the Property. No sediment sampling was conducted during the Phase Two ESA.                                                                                                                                                                                                        |
| Groundwater | Included          | Based on the depth to the stabilized groundwater table (beyond<br>5 mbgs) and potential surficial impacts from the identified<br>potentially contaminating activities, the Phase One ESA only<br>identified soil as media potentially impacted.<br>However, the groundwater was assessed for due diligence<br>purposes only. |



| Media         | Included/Excluded | Rationale                                                                                                                  |
|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|
| Surface Water | Excluded          | Surface water bodies were not presented on the Property. No surface water sampling was conducted during the Phase Two ESA. |

### 4.2.2 Overview of Field Investigation of Media

Soil sampling was conducted during the drilling investigation for the CoPCs identified in the Phase One ESA. Groundwater sampling was conducted from the new monitoring wells installed on the Property for due diligence purposes.

### 4.3 Phase One Conceptual Site Model

The Phase One Conceptual Site Model (CSM) prepared as part of the Phase One ESA report is provided in Appendix A.

# 4.4 Deviations From Sampling and Analysis Plan

No deviations from the sampling and analysis plan were observed. The Sampling and Analysis Plan is provided in Appendix B.

### 4.5 Impediments

No impediments were encountered during the Phase Two ESA.

# 5 Investigation Method

### 5.1 General

The Phase Two ESA followed the methods outlined in the Ontario Ministry of the Environment, Conservation, and Parks "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996).

The methods used in the Phase Two ESA did not differ from the associated standard operating procedures. The Standard Field Investigation Protocol is provided in Appendix C.

### 5.2 Drilling

The Phase Two ESA drilling information is provided below:

| Boreholes                                             | BH1 to BH3                                                                                          | BH1A and BH1B<br>BH2A to BH2C                                                                |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Date of Work                                          | November 14 <sup>th</sup> – 17 <sup>th</sup> , 2022                                                 | December 16 <sup>th</sup> , 2022                                                             |
| Name of the<br>Contractor(s)                          | 3D Drilling Inc.                                                                                    | Kodiak Drilling                                                                              |
| Equipment Used                                        | CME 55 drill rig, Mud rotary, 50mm sampling spoon                                                   | Minimole drill rig, Dual tube direct push, Probe<br>liner                                    |
| Measures for<br>Cross-<br>contamination<br>Prevention | The sampling device was washed between<br>each sample to prevent potential cross-<br>contamination. | A new probe liner was replaced between each sample to prevent potential cross-contamination. |
| Sampling<br>Frequency                                 | Please refer to the borehole logs in Appendix D for the sampling frequency.                         |                                                                                              |

# 5.3 The borehole locations are provided in Figure 4. Soil – Sampling

### 5.3.1 Equipment Used

Below is the equipment used during the soil sampling.

- Sampling containers supplied by the laboratories
- Nitrile gloves
- Cooler with ice
- RKI EAGLE 2 gas monitor

### 5.3.2 Geological Description

The borehole logs in Appendix D provide an overall geological description of each soil sample collected during the Grounded investigation.

# 5.4 Soil – Field Screening Measurements

Hydrocarbon vapour concentrations were screened in each soil sampling, using an RKI Eagle 2 gas monitor. The monitor is calibrated to *n*-hexane prior to field screening as per the calibration procedure outlined by RKI Instruments in *"Eagle 2 Operator's Manual, Part Number:71-0154RK"* released March 12, 2019. The monitor has a range of 0 to 40,000 parts per million (ppm) and an accuracy of +/- 5%.

Based on field screening measurements and visual and olfactory examination of all soil samples, selected samples were submitted for petroleum hydrocarbon (PHCs) and volatile organic



compounds (VOCs) laboratory analysis. Complete field screening readings are provided on the borehole logs in Appendix D.

# 5.5 Groundwater – Field Measurement of Water Quality Parameters

Groundwater quality parameters including temperature, pH, specific conductivity, total dissolved solids were measured using a Hanna Instruments portable meter prior to sampling.

# 5.6 Groundwater – Monitoring Well Installation

| Monitoring Wells                                      | BH1 to BH3                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date of Work                                          | November 14 <sup>th</sup> – 17 <sup>th</sup> , 2022                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Name of the<br>Contractor(s)                          | 3D Drilling Inc.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Equipment Used                                        | CME 55 drill rig, Mud rotary, 50mm sampling spoon                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Measures for<br>Cross-<br>contamination<br>Prevention | New well materials were used during install and drilling technicians donned new nitrile gloves to handle well materials prior to install.                                                                                                                                                                                                                                                                                            |  |
| Sampling<br>Frequency                                 | No groundwater samples were collected during drilling event.                                                                                                                                                                                                                                                                                                                                                                         |  |
| Well Construction                                     | The wells were constructed with 50 mm (2 in.) ID PVC screens and risers. Filter sand was placed around the well screen to approximately 0.6 m above the top of the screen. The wells were then backfilled with bentonite to approximately 0.3 m below ground surface (mbgs), the wells were finished with flush mounts.                                                                                                              |  |
| Well Development                                      | The monitoring wells were developed on November 18 <sup>th</sup> , 2022. Well development was conducted with a Low-Density Polyethylene (LDPE) tubing and foot valve. A total volume of 440 L of water was removed during the well development. Stabilization of parameters (pH, conductivity, temperature, etc.) of the purged water was monitored before a sample to ensure the samples are representative of the formation water. |  |

The Phase Two ESA monitoring well installation information is provided below:

The monitoring well locations are provided in Figure 4.

# 5.7 Groundwater – Sampling

The monitoring well was purged and sampled using a bladder pump. The groundwater was purged before sampling to ensure extraction of representative formation groundwater. Stabilization of water quality parameters of the purged water was monitored before a sample was taken to maintain the equilibrium with the surrounding formation water and produce samples that are representative of the formation water.





Sampling methodology from the Ontario Ministry of the Environment, Conservation and Parks (MECP) "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites In Ontario", MECP "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" and MECP "Protocol for Analytical Methods Used in the Assessment of Properties under Par XV.1 of the Environmental Protection Act" were followed in the collection of the groundwater samples.

# 5.8 Sediment – Sampling

No sediment sampling was conducted as part of this investigation.

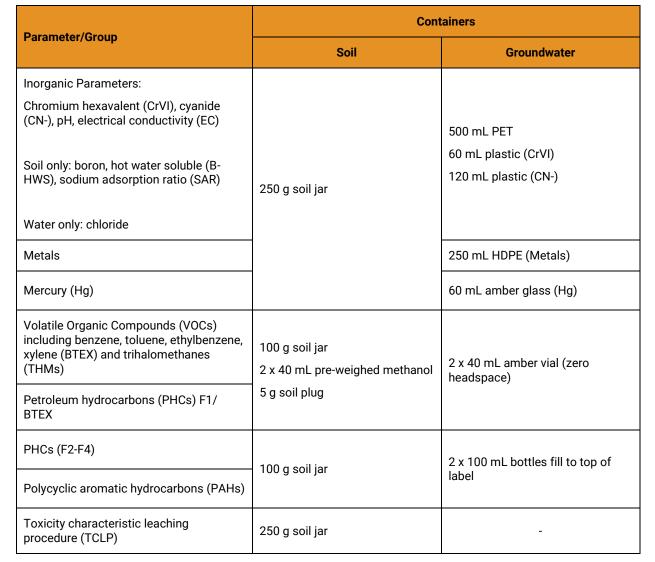
# 5.9 Analytical Testing

Analytical testing of all soil and groundwater samples was conducted by SGS Canada Inc.

### 5.10 Residue Management Procedures

| Residues                          | Management Procedures                                                                                                                                                   |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Soil Cuttings                     | Soil cuttings generated during the drilling activities were placed in drums and removed from the Property by a licensed contractor.                                     |  |
| Groundwater                       | The purged water generated during the well development and groundwater sampling events was disposed of in drums and removed from the Property by a licensed contractor. |  |
| Fluids from Equipment<br>Cleaning | The fluids from cleaning were removed from the Property and disposed by the drilling contractor.                                                                        |  |

Residues from the field investigation were managed accordingly as provided below:


# 5.11 Elevation Surveying

The elevation of the boreholes on the Property were surveyed using a Sokkia survey system. The Sokkia survey system is a differential global positioning system (GPS) which involves the cooperation of a receiver and tablet. The elevation of each borehole on the Property is presented on the borehole logs in Appendix D.

# 5.12 Quality Assurance and Quality Control Measures

### 5.12.1 Containers, Preservation, Labelling, Handling and Chain of Custody

The following laboratory supplied sample containers were used for all sampling conducted on the Property.



All sampling containers were equipped with laboratory supplied labels. The labels indicated the following information:

- Sample ID
- Company name
- Date
- Project number

Samples were placed in coolers with ice after collection for transportation to the laboratory. Sample hold times were met for all submitted soil and groundwater samples. Laboratory supplied Chain of Custody forms were completed for all samples submitted for analysis.





| Equipment            | Cleaning Procedures                                                                              |  |
|----------------------|--------------------------------------------------------------------------------------------------|--|
| Soil sampling        | Split spoon sampling device was washed between samples to prevent potential cross-contamination. |  |
| Groundwater sampling | Water level meter/ water quality monitoring meter was cleaned between monitoring wells.          |  |

All other dedicated equipment (nitrile gloves, terracores samplers, tubing) were changed between each sample to avoid cross-contamination.

### 5.12.3 Field Quality Control Measures and Deviations

For quality control purpose, the following actions were taken:

- At least one (1) duplicate sample is submitted for laboratory analysis for every ten (10) samples submitted for laboratory analysis for each sampled medium.
- Daily calibration of field instruments prior to sampling
- Groundwater trip blanks are used for Quality Assurance purposes for sampling of Volatile Organic Compounds.

No deviations from the quality assurance and quality control measures had occurred.

# 6 **Review and Evaluation**

# 6.1 Geology

Detailed geological information for the Property is presented on the borehole logs in Appendix D. The geology at the Property is summarized below.

| Geological Unit Thickness (Estimate)          |                     |  |
|-----------------------------------------------|---------------------|--|
| Borehole                                      | BH1 to BH3          |  |
|                                               | Thickness Range (m) |  |
| Surficial Materials                           | 0 to 0.2            |  |
| Earth Fill                                    | 0.2 to 4.6          |  |
| Sand and Silt to Sandy Silt<br>(Glacial Till) | 1.1 to 10.7         |  |



| Geological Unit Thickness (Estimate) |                     |  |
|--------------------------------------|---------------------|--|
| Borehole                             | BH1 to BH3          |  |
| Dorenole                             | Thickness Range (m) |  |
| Sand to Silty Sand (Sand<br>unit)    | 9.1 to 16.8         |  |
| Clayey Silt                          | 16.8 to 18.3        |  |
| Bedrock                              | 13.7 to 18.8        |  |

| Geological Unit Elevations                    |                        |                           |  |
|-----------------------------------------------|------------------------|---------------------------|--|
| Borehole                                      | BH1 to BH3             |                           |  |
| borenoie                                      | Elev. Top Range (masl) | Elev. Bottom Range (masl) |  |
| Surficial Materials                           | 88.5 to 87.4           | 88.3 to 87.2              |  |
| Earth Fill                                    | 88.3 to 87.2           | 87.4 to 83.1              |  |
| Sand and Silt to Sandy Silt<br>(Glacial Till) | 87.4 to 83.1           | 79.1 to 73.7              |  |
| Sand to Silty Sand (Sand<br>unit)             | 79.1 to 73.7           | 75.5 to 71.7              |  |
| Clayey Silt                                   | 71.7                   | 70.2                      |  |
| Bedrock                                       | 74.0                   | N/A                       |  |

# 6.1.1 Material in Geological Units

| Geological Units    | Description                                                                                                                                                                                                                                                                                                                  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surficial Materials | All boreholes encountered a pavement structure consisting of 150 mm asphaltic concrete.                                                                                                                                                                                                                                      |
| Earth Fill          | Earth fill was encountered at all borehole locations and underlying the pavement structure. The earth fill extended to a depth of 1.1 to 4.6 mbgs (Elev. 87.4 to 83.1 masl). The earth fill generally consisted of clayey silt with some sand and trace-some amount of gravel. The earth fill was typically brown and moist. |



| Geological Units                              | Description                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sand and Silt to Sandy Silt<br>(Glacial Till) | Underlying the fill materials, sand and silt to sandy silt tills were encountered.<br>The sand and silt to sandy silt tills extended to a depth of 9.1 to 10.7 m (Elev.<br>79.1 to 77.0 m). The sand and silt to sandy silt till generally consisted of clayey<br>to some clay, trace gravel and rock fragments. It was generally grey and moist. |
| Sand to Silty Sand (Sand unit)                | Underlying the silts, sand to silty sand was encountered at all borehole locations.<br>The sand to silty sand extended to a depth of 12.2 to 16.8 m (Elev. 75.5 to 71.7 m). The sand to silty sand generally consisted of trace amounts of clay, gravel and rock fragments. It was generally grey and wet.                                        |
| Clayey Silt                                   | Underlying the sands, clayey silt was encountered at BH3. The clayey silt extended to a depth of 16.8 to 18.3 m (Elev. 71.7 to 70.2 m). The clayey silt generally consisted some sand with trace gravel, and shale fragments. It was generally grey and moist.                                                                                    |
| Bedrock                                       | Bedrock was encountered at a depth of 13.7 mbgs (Elev. 74.0 m).                                                                                                                                                                                                                                                                                   |

### 6.1.2 Properties of Aquifers and Aquitards

| Aquifers/Aquitards                            | Description                                                                                                                                                                                                                          |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Earth Fill                                    | The Earth Fill on the Property is considered to be an unconfined aquifer. The earth fill likely drains into the catch basins onsite or storm water systems adjacent to the Property.                                                 |
| Sand and Silt to Sandy Silt<br>(Glacial Till) | The glacial till deposit with a silt and sand matrix is considered to be an unconfined aquifer with high permeability. The groundwater table at the Property is present within this aquifer.                                         |
| Sand to Silty Sand (Sand unit)                | The sands are considered to be an unconfined aquifer due to their high<br>permeability and that during the field investigation they were noted to be wet.<br>This unit is hydraulically connected to the overlying Glacial Till unit |
| Clayey Silt                                   | The clayey silt is considered to be an aquitard due to its low permeability. This unit appeared to be discontinuous across the Property.                                                                                             |
| Bedrock                                       | Bedrock likely contains groundwater within cracks and fissures and is hydraulically connected to the unconfined aquifer in the overburden.                                                                                           |

### 6.1.3 Rationale for Choice of Aquifers and Aquitards Investigated

The sand unit was chosen for investigation. This stratum was chosen for investigation because:

- Possibility of free groundwater present, based on field observation of moisture content i.e., wet soils
- The possible location of mobile contamination within the native overburden and lower units
- The likelihood of horizontal migration of groundwater across the site



# 6.2 Groundwater: Elevations and Flow Direction

A total of three (3) monitoring wells have been installed by Grounded. Screened intervals of the monitoring wells were selected for the collection of groundwater samples within the desired strata based on moisture contents observed during the field investigation.

Three groundwater level measurements were conducted by Grounded in the newly installed monitoring wells using a Solinst interface probe on the following dates:

- November 23, 2022
- January 12, 2024
- January 16, 2024

To calculate the groundwater elevation in the monitoring well, the following calculation was completed:

 Geodetic Ground Elevation (masl) – Measured Depth to Water Table (m) + Stick up of Well (m) = Groundwater Elevation (masl)

No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) or free-flowing products were detected on the Property. The groundwater levels are presented in Table 1 and Figure 5.

Based on the groundwater elevations measured on the Property, a single unconfined aquifer is present within the lower glacial till extending into the underlying sand unit. The shallowest groundwater depth was measured at 4.9 mbgs (82.5 masl) in BH1 on January 16, 2024. The groundwater flow in the aquifer was determined to flow locally to the west. Regional groundwater flow is expected to flow to the south towards Frenchman's Bay. Groundwater contours are presented in Figure 5.

Additional groundwater data will be required to assess seasonal variability in groundwater quantity and flow direction; however, it based on the groundwater levels from 2022 to 2024, variability is expected to be limited.

| Horizontal<br>Hydraulic Gradients | The horizontal hydraulic gradient at the Property was determined to be approximately 0.002 m/m based on the groundwater levels in boreholes BH1 & BH2.                                                                                                                                                                                           |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vertical Hydraulic<br>Gradients   | Based on the location and depths of the installed monitoring wells, the vertical gradient could not be calculated.                                                                                                                                                                                                                               |
| Hydraulic<br>Conductivity         | Earth fill – 1.0 x 10 <sup>-6</sup> m/s (published literature values in Freeze and Cherry, 1979)<br>Sand and Silt to Sandy Silt (Glacial Till) - 9.09 × 10 <sup>-7</sup> (based on in-situ single well response<br>test)<br>Sand to Silty Sand – 5.43 × 10 <sup>-5</sup> to 9.61 × 10 <sup>-5</sup> (based on in-situ single well response test) |

# 6.3 Groundwater: Hydraulic Gradients



Clayey Silt –  $1.0 \times 10^{-8}$  to  $1.0 \times 10^{-10}$  (published literature values in Freeze and Cherry, 1979)

### 6.4 Fine-Medium Soil Texture

Grain size analysis were completed for selected soil samples from the boreholes at the Property. The grain size analysis is provided in Appendix E.

Based on the results of the grain size analyses, all soil samples contained 50 per cent or more by mass of particles that are smaller than 75 micrometres in mean diameter. As such, the qualified person has determined that less than 1/3 of the soil at the property, measured by volume, consists of coarse textured soil, and therefore the qualified person has applied the standard for medium and fine textured soil.

# 6.5 Soil – Field Screening

Based on field screening measurements and visual and olfactory examination of all soil samples, selected samples were submitted for petroleum hydrocarbon (PHCs) and volatile organic compounds (VOCs) laboratory analysis. Complete field screening readings are provided on the borehole logs in Appendix D. No anomalous organic vapour readings were identified to indicate the presence of any volatile contaminants.

# 6.6 Soil – Quality

#### 6.6.1 Location and Depth of Samples

| Sample ID   | De                                              | pth         | Strata           | APEC     | M/  | ORPs | PAHs | PHCs | BTEX | VOCs |
|-------------|-------------------------------------------------|-------------|------------------|----------|-----|------|------|------|------|------|
| Sample ID   | mbgs                                            | masl        | Strata           | Assessed | н-м | *    | ГАП5 | PHUS | DIEA | VUCS |
| Grounded Dr | Grounded Drilling Investigation (November 2022) |             |                  |          |     |      |      |      |      |      |
| BH1 SS1     | 0.2 - 0.8                                       | 87.3 - 86.7 | Fill             | 1,2      | ~   | ~    |      |      |      |      |
| BH1 SS2     | 0.8 - 1.4                                       | 86.7 - 86.1 | Fill             | 1        |     |      | ~    |      |      |      |
| BH1 SS4     | 2.3 - 2.9                                       | 85.1 - 84.5 | Fill             | 1,2      | ~   | ~    | ~    | ~    | ~    | ~    |
| BH1 SS10    | 10.7 - 11.3                                     | 76.8 - 76.1 | Sand and<br>Silt | 1        |     |      |      | √    | ~    | ~    |
| BH2 SS1     | 0.2 - 0.8                                       | 87.5 - 86.9 | Fill             | 1,2      | ~   | ~    |      |      |      |      |
| BH2 SS2     | 0.8 - 1.4                                       | 86.9 - 86.3 | Fill             | 1        |     |      | ✓    | ~    | ~    | ~    |
| BH2 SS3     | 1.5 - 2.1                                       | 86.2 - 85.6 | Fill             | 1,2      | ~   | ~    | ~    |      |      |      |

| Comple ID   | Depth           |               | Otractor              | APEC     | M/  | ORPs      | PAHs | PHCs | DTEV | VOCs |
|-------------|-----------------|---------------|-----------------------|----------|-----|-----------|------|------|------|------|
| Sample ID   | mbgs            | masl          | Strata                | Assessed | H-M | *         | PARS | PHUS | BTEX | VUCS |
| BH2 SS6     | 4.6 - 5.2       | 83.1 - 82.5   | Sand and<br>Silt Till | 1        |     |           |      | ~    | ✓    |      |
| BH2 SS9     | 9.1 - 9.8       | 78.6 - 77.9   | Sand and<br>Silt Till | 1        |     |           |      | ~    | ✓    | ~    |
| BH3 SS1     | 0.2 - 0.8       | 88.3 - 87.7   | Fill                  | 1,2      | ~   | ~         |      |      |      |      |
| BH3 SS2     | 0.8 - 1.4       | 87.7 - 87.1   | Sand and<br>Silt Till | 1        |     |           | ~    | ~    | ~    | ~    |
| BH3 SS3     | 1.5 - 2.1       | 86.9 - 86.3   | Sand and<br>Silt Till | 1,2      | ~   | ~         |      |      |      |      |
| BH3 SS4     | 2.3 - 2.9       | 86.2 - 85.6   | Sand and<br>Silt Till | 1        |     |           | ~    |      |      |      |
| BH3 SS9A    | 9.1 - 9.4       | 79.3 - 79.0   | Sand and<br>Silt Till | 1        |     |           |      | ~    | ~    | ~    |
| Grounded Dr | illing Investig | ation (Decemb | er 2022)              |          |     |           |      |      |      |      |
| BH1A SS1    | 0.3 - 0.9       | 87.1 - 86.5   | Fill                  | 1        |     | ✓<br>(pH) |      |      |      |      |
| BH1A SS2    | 0.9 - 1.5       | 86.5 - 85.9   | Fill                  | 1        |     | √<br>(pH) |      |      |      |      |
| BH1B SS1    | 0.3 - 0.9       | 87.1 - 86.5   | Fill                  | 1        |     | ✓<br>(pH) |      |      |      |      |
| BH1B SS2    | 0.9 - 1.5       | 86.5 - 85.9   | Fill                  | 1        |     | ✓<br>(pH) |      |      |      |      |
| BH2A SS1    | 0.6 - 1.2       | 87.1 - 86.5   | Fill                  | 1        |     |           |      | ~    |      |      |
| BH2B SS1    | 0.6 - 1.2       | 87.1 - 86.5   | Fill                  | 1        |     |           |      | ~    |      |      |
| BH2C SS1    | 0.6 - 1.2       | 87.1 - 86.5   | Fill                  | 1        |     |           |      | ~    |      |      |

\*Soil samples were submitted for the following select ORPs: Cyanide (CN-), Mercury (Hg), Hexavalent Chromium (Cr(VI)), low or high pH, Boron Hot-Water Soluble, EC, SAR

#### 6.6.2 Comparison to Applicable Standards

Selected soil samples were analyzed for the following Contaminants of Potential Concern (CoPCs) identified in the Phase One ESA:

• M

•

- H-M
  - o Sb, As, Se



- Select ORPs
  - B-HWS, CN-, EC, SAR, Cr(VI), Hg, pH
- PAHs
- PHCs
- BTEX
- VOCs

The results of the analysis were compared to the applicable Site Condition Standard for the Phase Two Property (Table 2 RPI M/F). The laboratory certificates of analysis are provided in Appendix F, and the results of the soil chemical analysis are provided in Table Tables 2.1 to 2.4 and presented on Figures 6 to 9.

| Comparison Table (Table 2 RPI N | Comparison Table (Table 2 RPI M/F Standard) |                                |  |  |  |  |  |
|---------------------------------|---------------------------------------------|--------------------------------|--|--|--|--|--|
| Parameter Analyzed              | Exceed/Meet                                 | Note:                          |  |  |  |  |  |
| Metals                          | Meet                                        | None                           |  |  |  |  |  |
| Hydride-forming Metals          | Meet                                        | None                           |  |  |  |  |  |
| ORPs                            | Meet                                        | None. Refer to section 6.6.2.1 |  |  |  |  |  |
| PAHs                            | Meet                                        | None                           |  |  |  |  |  |
| РНС                             | Meet                                        | None                           |  |  |  |  |  |
| втех                            | Meet                                        | None                           |  |  |  |  |  |
| voc                             | Meet                                        | None                           |  |  |  |  |  |

#### 6.6.2.1 Exemption of Salt Related Exceedances (O.Reg. 153/04 Sec 49.1 (1))

Chemical analysis of the soil indicates that there are exceedances of the MECP Table 2 RPI Standards for Electrical Conductivity and Sodium Adsorption Ratio (salt related compound) within the upper soils in BH2 and BH3.

The Property is bound by municipal roadways to the east (Dixie Road) and west (Kingston Road). The roadways have public sidewalks between the road and the Property boundary. The Property features construction vehicle traffic and car parking. The roadways, sidewalks, and parking area are all salted during the winter months for safety purposes.

The Qualified Person has determined, based on the Phase One Environmental Site Assessment and the Phase Two Environmental Site Assessment, that a substance (salt) has been applied to surfaces of the roadway, sidewalks, driveway, and parking area for the safety of vehicular and pedestrian traffic under conditions of snow or ice or both. The applicable site condition standard is exceeded at the Property solely because of the reason as stated above (application of salt for safety purposes during winter months). As per O.Reg. 153/04 49.1 the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act.

#### 6.6.2.2 Additional pH sampling

The drilling program conducted by Grounded collected a soil sample in BH1 between 0.2 to 0.8 m depth (BH1/SS1) that had an elevated pH level of 9.12 pH units. On December 16, 2022, Grounded advanced 2 additional boreholes (BH1A and BH1B) within 1 m laterally of BH1 to a maximum depth of 1.5 m below existing grade. Four samples (BH1A/SS1, BH1A/SS2, BH1B/SS1, BH1B/SS2) plus one duplicate were collected at depths of 0.3 to 0.9 mbgs (SS1) and 0.9 to 1.5 mbgs (SS2), respectively. The laboratory results indicated that all samples were within the applicable range of 7.00 to 9.00 pH units for surface soil, as indicated below:

| Sample Name                  |                                                | MECP<br>Table 2<br>RPI |   | BH1 SS1     | BH1A SS1    | DUP-2<br>(BH1A SS1) | BH1B SS1    | BH1A SS2    | BH1B SS2    |
|------------------------------|------------------------------------------------|------------------------|---|-------------|-------------|---------------------|-------------|-------------|-------------|
| Date                         |                                                |                        |   | 11-Nov-22   | 16-Dec-22   | 16-Dec-22           | 16-Dec-22   | 16-Dec-22   | 16-Dec-22   |
| Depth of<br>Sample (m)       | Units                                          |                        |   | 0.2 - 0.8   | 0.3 - 0.9   | 0.3 - 0.9           | 0.3 - 0.9   | 0.9 - 1.5   | 0.9 - 1.5   |
| Elev. of<br>Sample<br>(masl) |                                                |                        |   | 87.3 - 86.7 | 87.1 - 86.5 | 87.1 - 86.5         | 87.1 - 86.5 | 86.5 - 85.9 | 86.5 - 85.9 |
| pН                           | unitless                                       | 5 to 9                 | - | 9.12        | 8.13        | 8.01                | 8.1         | 8.07        | 8.04        |
| Average                      | Average Result of soils 0.2-0.9 mbgs<br>(SS1)* |                        |   |             | 8.          | 26                  |             |             |             |

\*Results were averaged with the original sample and soil sample points taken within 1 metre of and same depth within the same soil horizon as the original exceedance.

The Qualified Person has determined that the original sample in BH1-SS1 is anomalous, likely due to concrete or lime dust included in the original sample. As per Section 48 (2) of O.Reg. 153/04, an average of the original sample (BH1/SS1) and additional samples within 1 m of the original sample from BH1A and BH1B and at 0.3 to 0.9 m depth (BH1A/SS1 and BH1B/SS1) was used to determine the representative pH value of the surface soils in this location. This average pH value of 8.26 was calculated as follows:

- i. converting the pH value of the original samples and additional auger hole samples to their corresponding hydrogen ion (H+) concentrations
- ii. calculating the average H+ concentration, and
- iii. converting the average H+ concentration back to its corresponding pH value.

The QP has determined through additional sampling, that the elevated pH reading in BH1/SS1 was likely due to concrete and/or lime dust included in the sample. This average pH value of additional samples taken at this depth of 8.26 is within the applicable range of 7.00 to 9.00 pH units for surface soils and therefore, all surface soil at the Property is within the applicable range for pH.



#### 6.6.3 Contaminants of Concern

No Contaminants of Concern were identified within the earth fill and native soil on the Property.

#### 6.6.4 Contamination Impact on Other Media

No Contaminants of Concern were identified within the earth fill and native soil on the Property. It is unlikely that other media on the Property will be impacted.

#### 6.6.5 Chemical or Biological Transformations

No chemical or biological transformations are likely to occur since no Contaminants of Concern were identified in the soil on the Property.

#### 6.6.6 Presence of Light or Dense Non-Aqueous Phase Liquids

No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected in the soil on the Property.

### 6.7 Groundwater Quality

#### 6.7.1 Location and Depth of Samples

|              | Screen                                          | Depth          |                                     |                  | Metals,       |              |               |      |
|--------------|-------------------------------------------------|----------------|-------------------------------------|------------------|---------------|--------------|---------------|------|
| Sample<br>ID | mbgs                                            | masl           | Screen Strata                       | APEC<br>Assessed | H-Metals<br>& | PAHs         | PHCs/<br>BTEX | VOCs |
|              | mbgs                                            | masl           |                                     |                  | ORPs          |              |               |      |
| Grounded     | Grounded Drilling Investigation (November 2022) |                |                                     |                  |               |              |               |      |
| BH1          | 10.7 - 13.7                                     | 76.8 -<br>73.7 | Sand and Silt<br>Till/Sand          | Due<br>Diligence | $\checkmark$  | $\checkmark$ | $\checkmark$  | ✓    |
| BH2          | 9.1 - 12.2                                      | 78.6 -<br>75.5 | Sand and Silt<br>Till/Silty<br>Sand | Due<br>Diligence | ~             | ~            | ~             | ~    |
| BH3          | 12.2 - 15.2                                     | 76.3 -<br>73.2 | Sand                                | Due<br>Diligence | ✓             | ✓            | ✓             | ~    |

\*Groundwater samples were submitted for the following select ORPs: Cyanide (CN-), Mercury (Hg), Hexavalent Chromium (Cr(VI)), low or high pH, Chloride (CI)

Field filtering as per the requirements of the MECP "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 2011, was completed.



Selected groundwater samples were analyzed for the following parameters for due diligence purposes:

- M
- H-M
  - o Sb, As, Se
- Select ORPs
  - o Cr(VI), CN-, Hg, CI-, pH
- Na
- PAHs
- PHCs
- BTEX
- VOCs

The results of the analysis were compared to the applicable Site Condition Standard for the Phase Two Property (Table 2 RPI). The laboratory certificates of analysis are provided in Appendix F, and the results of the groundwater chemical analysis are provided in Tables 3.1 to 3.4 and presented on Figures 7 to 9.

| Comparison Table (Table 2 RPI Standard) |             |       |  |  |  |  |
|-----------------------------------------|-------------|-------|--|--|--|--|
| Parameter Analyzed                      | Exceed/Meet | Note: |  |  |  |  |
| Metals                                  | Meet        | None  |  |  |  |  |
| H-Metals                                | Meet        | None  |  |  |  |  |
| ORPs                                    | Meet        | None  |  |  |  |  |
| Na                                      | Meet        | None  |  |  |  |  |
| PAHs                                    | Meet        | None  |  |  |  |  |
| PHCs                                    | Meet        | None  |  |  |  |  |
| втех                                    | Meet        | None  |  |  |  |  |
| VOCs                                    | Meet        | None  |  |  |  |  |

#### 6.7.3 Contaminants of Concern

No Contaminants of Concern were identified in the groundwater on the Property.



### 6.7.4 Contamination Impact on Other Media

No Contaminants of Concern were identified with the groundwater on the Property. It is unlikely that other media on the Property will be impacted.

### 6.7.5 Chemical or Biological Transformations

No chemical or biological transformations are likely to occur since no Contaminants of Concern were identified in the groundwater on the Property.

### 6.7.6 Presence of Light or Dense Non-Aqueous Phase Liquids

No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected in the soil on the Property.

### 6.8 Sediment – Quality

Sediment was not present at the Property thus was not investigated as part of the Phase Two ESA.

### 6.9 Quality Assurance and Quality Control Results

Quality Assurance (QA) and Quality Control (QC) were maintained as per described in Section 5.12 above. In addition, laboratory results were compared to MECP standards for QA/QC under Ontario Regulation 153/04 which requires laboratory results to meet specific method detection limit (MDL) conditions. The sampling and analysis performed conformed with the following guidelines:

- 1. Ministry of the Environment, Conservation and Parks Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- 2. Protocol of Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act of Ontario.

Duplicated samples were submitted at a rate of 10% for both soil and groundwater samples.

All the samples collected and submitted for analysis adhered to the holding times, preservation methods, storage requirement and container type as specified by the guidelines listed above.

#### 6.9.1 Subsection 47 (3) of the Regulation

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47 (3). A certificate of analysis or analytical report has been received for each sample submitted for analysis. All certificates of analysis or analytical reports received have been in full in Appendix F.



### 6.9.2 Laboratory Qualification of Results

The laboratory did not make any significant comments that changed the outcome of the analytical results regarding the soil and groundwater samples.

#### 6.9.3 Overall Quality of Field Data

Decision-making related to the quality of field data of the Property was not affected. The overall quality of the field data was considered by the Qualified Person to meet the objectives of the investigation and assessment.

### 6.10 Phase Two Conceptual Site Model

Phase Two Conceptual Site Model (CSM) is prepared for the Property and is provided in Appendix G.

# 7 Conclusions

The location and concentration of contamination is provided below:

| Land        | No exceedances of the applicable Site Condition Standards were identified in the soil on the Property.        |
|-------------|---------------------------------------------------------------------------------------------------------------|
| Groundwater | No exceedances of the applicable Site Condition Standards were identified in the groundwater on the Property. |

No exceedances of the applicable Site Condition Standards were identified for the soil and groundwater on the Property. As such, no remediation or a risk assessment (RA) will be required. A Record of Site Condition (RSC) can be filed for the Property.

Whether applicable Site Condition Standards and standards specified in a risk assessment for contaminants on, in or under the phase two property were met as of the certification date is provided below:

| Soil        | <b>Earth</b><br><b>Fill</b> The applicable Site Condition Standards were <b>met</b> in the earth fill located on t |                                                                                                     |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 3011        | Native         The applicable Site Condition Standards were met in the native soils located on the Property.       |                                                                                                     |  |  |  |  |  |
| Groundwater |                                                                                                                    | The applicable Site Condition Standards were <b>met</b> in the groundwater located on the Property. |  |  |  |  |  |



# 7.1 Signatures

The Phase Two ESA has been completed in accordance with O. Reg. 153/04 by Vivi Tran, EIT under the direction and supervision of Suvish Melanta, P.Eng.,  $QP_{ESA}$  and Matthew Bielaski, P.Eng.,  $QP_{RA-ESA}$ . The findings and conclusions presented in this report have been determined based on the information that was obtained and reviewed from previous investigations provided and on the current investigation for the Phase Two Property.

We trust that this report meets your requirements at present.

For and on behalf of our team,



Vivi Tran, EIT Project Coordinator





Suvish Melanta, P.Eng., QP<sub>ESA</sub> Associate



# 8 References

- 1. Grounded Engineering Inc. Phase One Environmental Site Assessment 1095 Kingston Road | Pickering, Ontario. File No. 22-279 (Rev. 1.0). January 16, 2024.
- 2. Ontario Ministry of the Environment, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.*
- 3. Ontario Ministry of the Environment, April 2011. Soil, Ground Water and Sediment Standards for use under Part XV. 1
- 4. Ontario Ministry of the Environment, June 2011. *Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04.*
- 5. Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV. 1 of the Environmental Protection Act.
- 6. PGL Environmental Consultants. *Phase 1 Environmental Site Assessment 1095 Kingston Road, Pickering, ON.* File No. 5947-01.01. December, 2019.



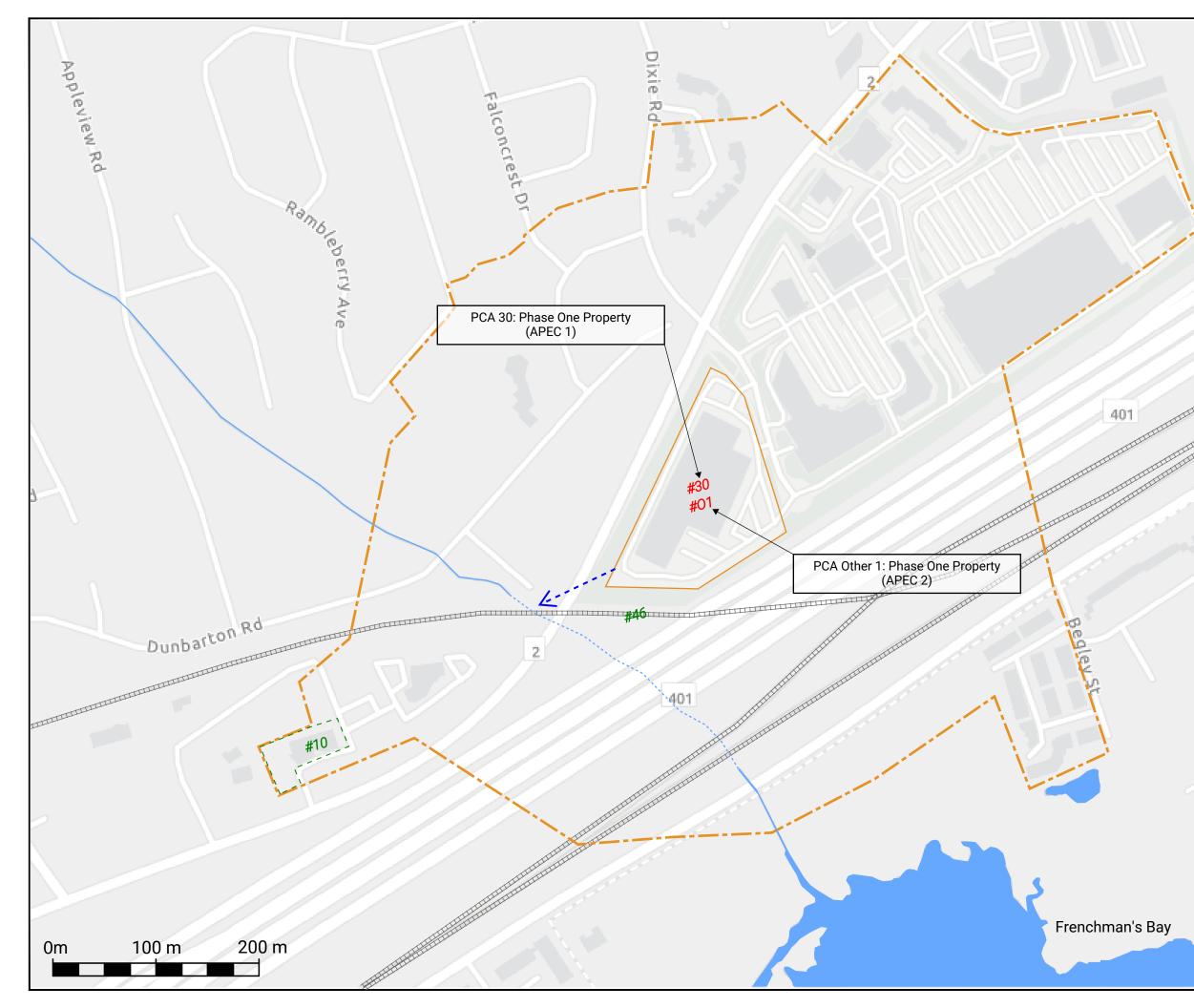
# 9 Limitations and Restrictions

The Phase Two ESA report was prepared for the purpose of identifying potential environmental concerns, including an assessment of the likelihood that the environmental quality of the soil and groundwater at the Property may have been adversely affected by past or present practices at the Property, and/or those of the adjacent properties prior to development of the Property. Any use of which a third party makes of this report, or any reliance on or decision to be made based on it, are the responsibility of such third parties. Grounded Engineering Inc. does not assume any responsibility for errors, omissions, damages or other limitation pertaining to third parties.

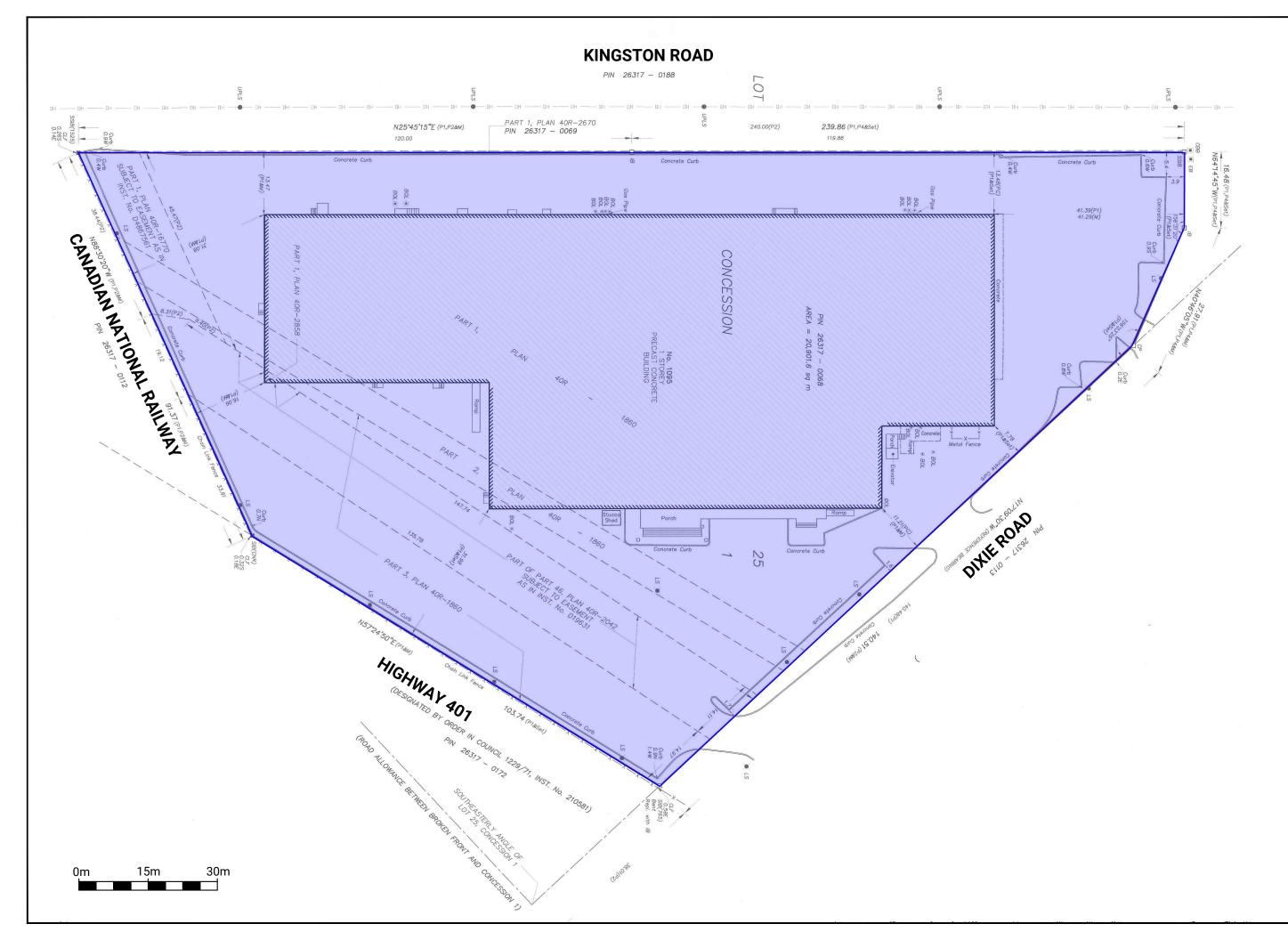
The information presented in this report is based on information collected during the completion of the subsurface investigation conducted by Grounded Engineering Inc. It is based on conditions at the Property at the time of the inspection. The subsurface conditions were assessed based on information collected at specific borehole and monitoring well locations. The actual subsurface conditions between sampling points may be different.

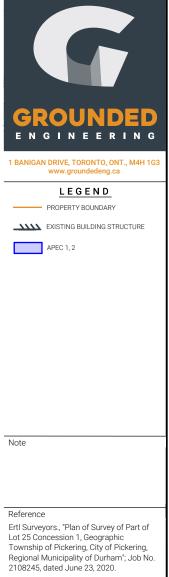

The conclusions presented in this report are based on work undertaken by trained professional and technical staff and are the product of professional care and competence. The report cannot be construed as legal advice or as an absolute guarantee.

If new information regarding the environmental condition of the Phase Two Property is identified during future work, or outstanding responses from regulatory agencies indicate outstanding issues on file with respect to the Phase Two Property, Grounded Engineering Inc. should be notified so that we may re-evaluate the findings of this assessment and provide amendments.


The authorized users of this report are 1095 Kingston Road Limited, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc.






|               | Contraction                                                                |
|---------------|----------------------------------------------------------------------------|
|               | Note                                                                       |
| St Martins Dr | ArcGIS Map 2022 Project 1095 KINGSTON ROAD PICKERING, ONTARIO Figure Title |
|               | SITE LOCATION North PROJECT Date FEBRUARY 2024                             |
| 5             | Scale<br>AS INDICATED<br>Job No<br>22-279<br>Figure No<br>FIGURE 1         |



| <b>GROUNDED</b><br>ENGINEERING                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3<br>www.groundedeng.ca                                                                                                                                                       |
| LEGEND         APPROXIMATE PROPERTY BOUNDARY         STUDY AREA (250 m RADIUS)         RAILWAY TRACKS         REGULATED WATERBOLDIES         <         ASSUMED GROUNDWATER FLOW<br>DIRECTION BASED ON PHASE ONE ESA |
| Note<br>GREEN - PCA NOT CAUSING APEC<br>RED - PCA CAUSING APEC                                                                                                                                                      |
| ArcGIS Map 2022                                                                                                                                                                                                     |
| Project<br>1095 KINGSTON ROAD<br>PICKERING, ONTARIO                                                                                                                                                                 |
| Figure Title PCA LOCATIONS                                                                                                                                                                                          |
| North                                                                                                                                                                                                               |
| Date<br>FEBRUARY 2024                                                                                                                                                                                               |
| Scale AS INDICATED                                                                                                                                                                                                  |
| Job No 22-279                                                                                                                                                                                                       |
| Figure No<br>FIGURE 2                                                                                                                                                                                               |
|                                                                                                                                                                                                                     |





Project

### 1095 KINGSTON ROAD PICKERING, ONTARIO

Figure Title

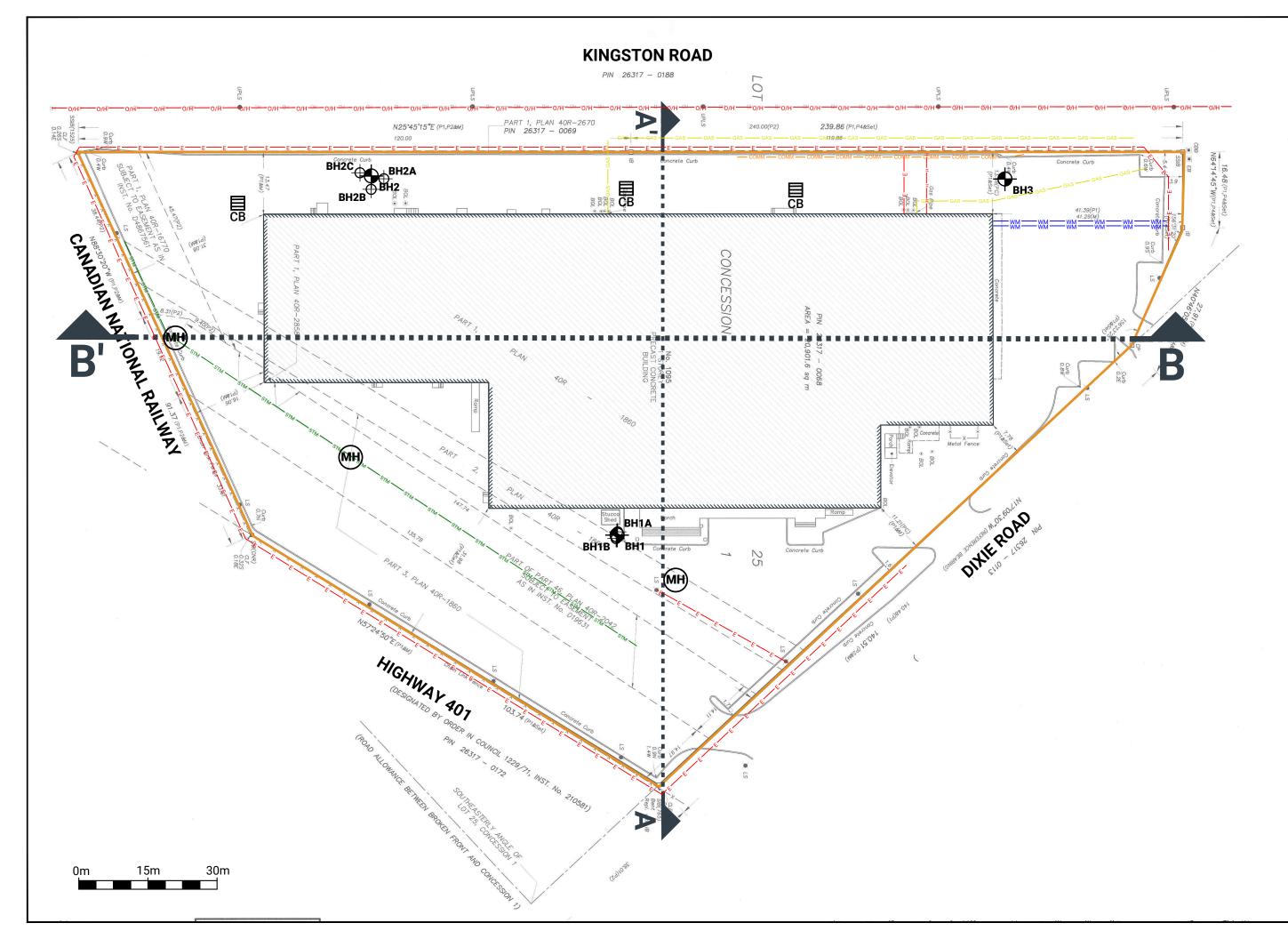
### APEC LOCATIONS

North



Date FEBRUARY 2024

Scale


AS INDICATED

22-279

Figure No

Job No

FIGURE 3



| GROUNDED<br>E N G I N E E R I N G                             |
|---------------------------------------------------------------|
| 1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3<br>www.groundedeng.ca |
| LEGEND<br>PROPERTY BOUNDARY                                   |
| EXISTING BUILDING STRUCTURE                                   |
| CROSS SECTION LINE                                            |
| HONITORING WELL/BOREHOLE<br>BY GROUNDED                       |
| GAS GAS                                                       |
| E ELECTRICAL                                                  |
| H BURIED HYDRO                                                |
| OVERHEAD HYDRO                                                |
|                                                               |
| - COMM COMMUNICATION                                          |
|                                                               |
|                                                               |
| MH MANHOLE                                                    |
| CB CATCH BASIN                                                |
| Note                                                          |

NOTE Utilities shown on this figure are shown for informational purposes only for the Phase One ESA, as outlined by 0.Reg. 153/04. This is not an official locate and the information presented \_should not be relied upon. Reference

Ertl Surveyors., "Plan of Survey of Part of Lot 25 Concession 1, Geographic Township of Pickering, City of Pickering, Regional Municipality of Durham"; Job No. 2108245, dated June 23, 2020.

Project

### 1095 KINGSTON ROAD PICKERING, ONTARIO

Figure Title

### BOREHOLES LOCATION PLAN

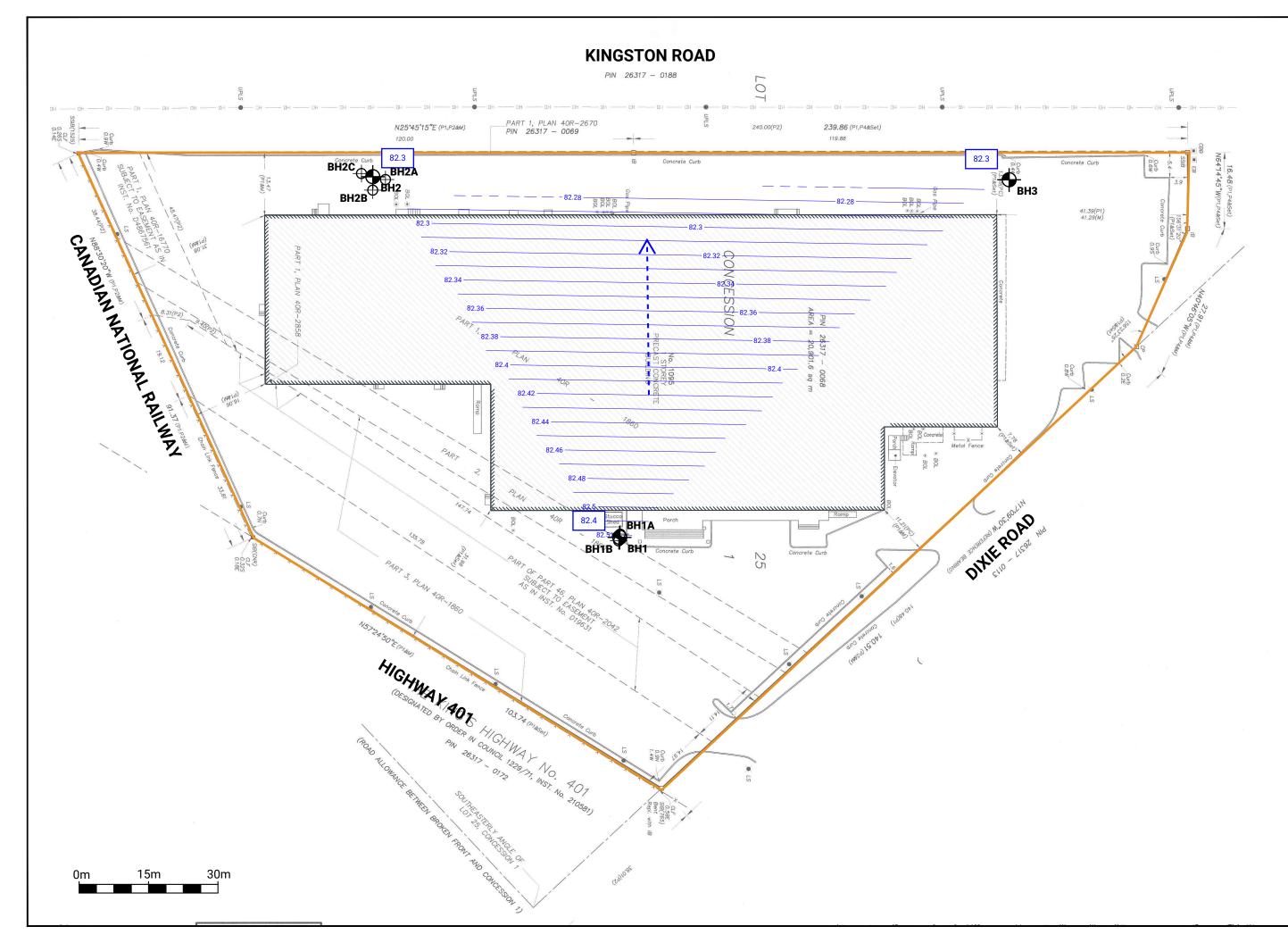
North



Date

FEBRUARY 2024

Scale


AS INDICATED

Job No

22-279

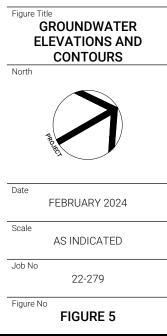
Figure No

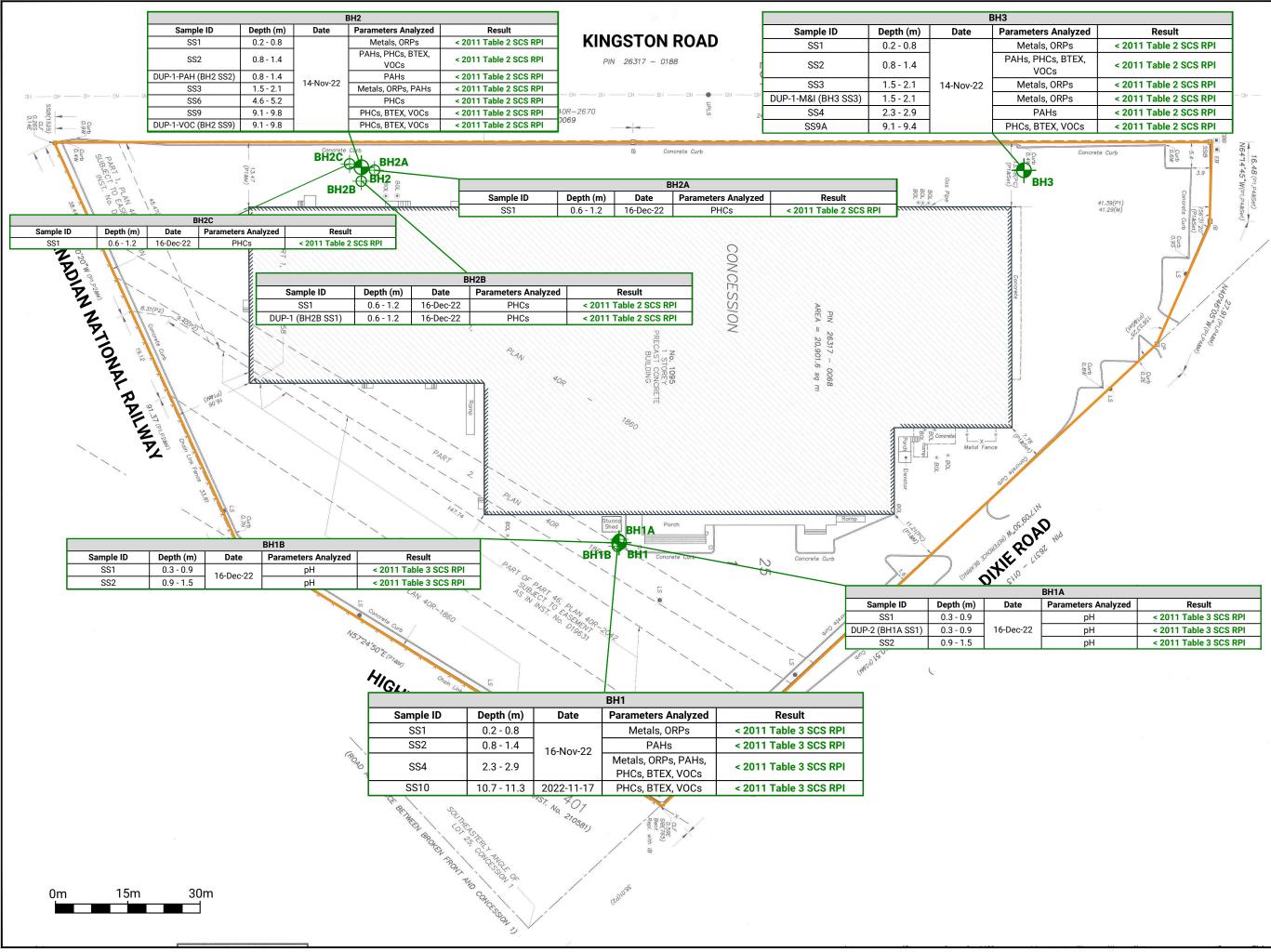
FIGURE 4





#### Note


Groundwater elevation data used was collected during the January 16, 2024 monitoring event.


### Reference

Ertl Surveyors., "Plan of Survey of Part of Lot 25 Concession 1, Geographic Township of Pickering, City of Pickering, Regional Municipality of Durham"; Job No. 2108245, dated June 23, 2020.

Project

### 1095 KINGSTON ROAD PICKERING, ONTARIO







### Note

Soil samples were submitted for the following select ORPs: Cyanide (CN-), Mercury (Hg), Hexavalent Chromium (Cr(VI)), pH, Boron Hot-Water Soluble, EC, SAR, unless otherwise specified.

Reference

Ertl Surveyors., "Plan of Survey of Part of Lot 25 Concession 1, Geographic Township of Pickering, City of Pickering, Regional Municipality of Durham"; Job No. 2108245, dated June 23, 2020.

Project

### **1095 KINGSTON ROAD PICKERING, ONTARIO**

Figure Title

### SOIL SAMPLING LOCATIONS

North

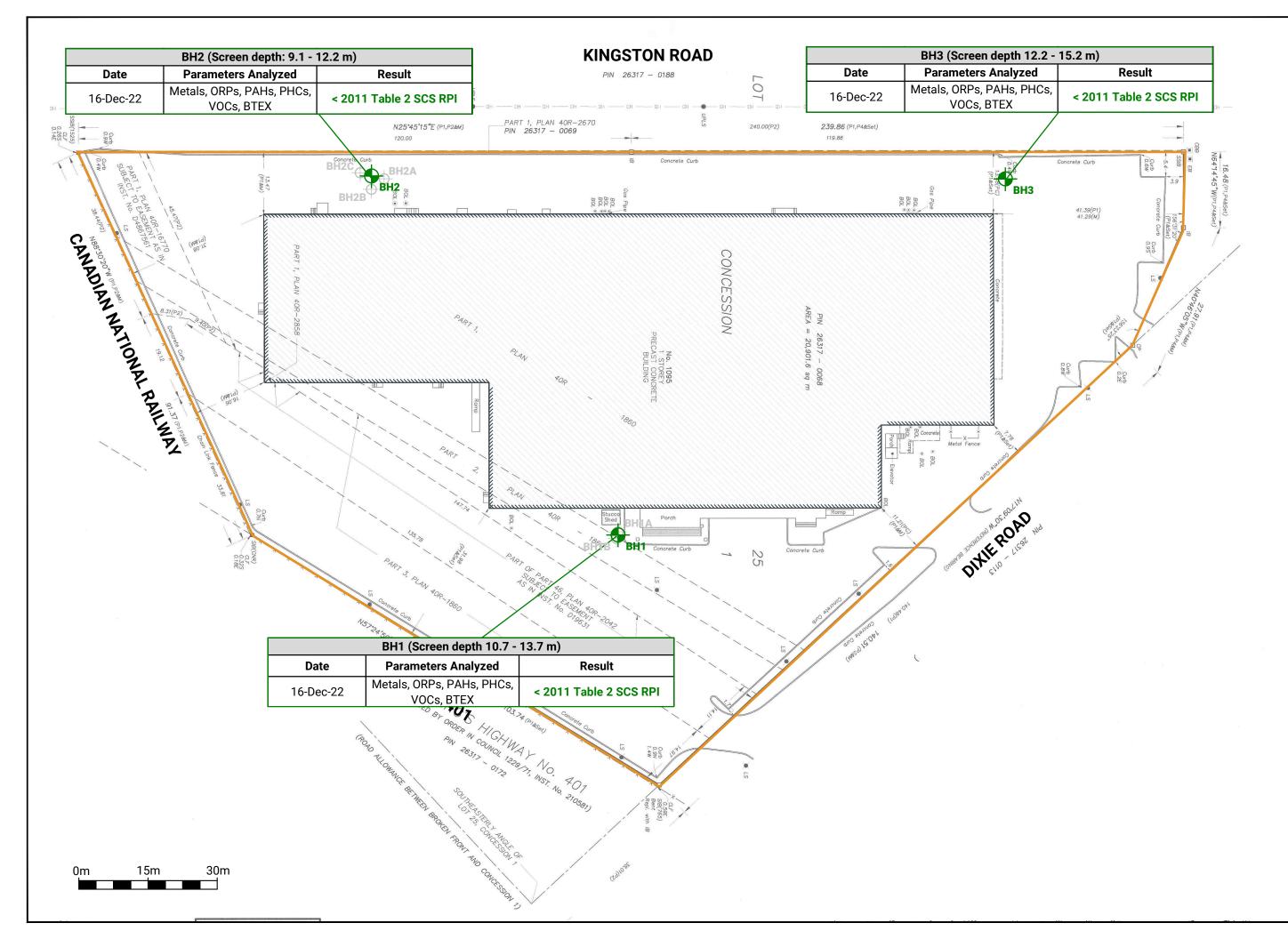


Date

FEBRUARY 2024

Scale

Job No


AS INDICATED

22-279

FIGURE 6

Figure No

| s Analyzed | Result                 |
|------------|------------------------|
| Н          | < 2011 Table 3 SCS RPI |
| H          | < 2011 Table 3 SCS RPI |
| H          | < 2011 Table 3 SCS RPI |





Note Groundwater samples were submitted for the following **select ORPs**: Cyanide (CN-), Mercury (Hg), Hexavalent Chromium (Cr(VI)), I pH, Chloride (CI). These samples also submitted for sodium.

### Reference

Ertl Surveyors., "Plan of Survey of Part of Lot 25 Concession 1, Geographic Township of Pickering, City of Pickering, Regional Municipality of Durham'; Job No. 2108245, dated June 23, 2020.

Project

### **1095 KINGSTON ROAD PICKERING, ONTARIO**

Figure Title

### GROUNDWATER SAMPLING LOCATIONS

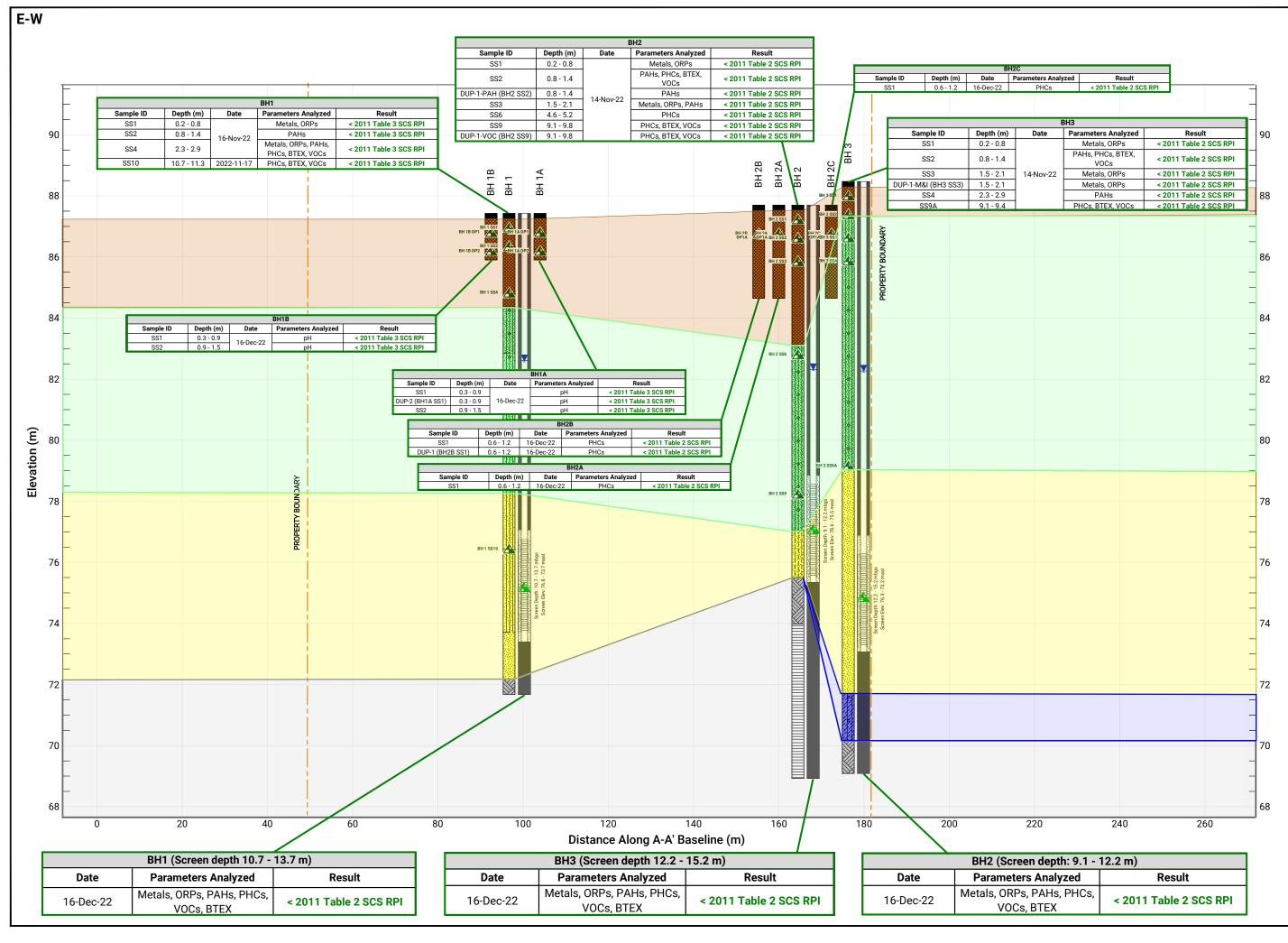
North



Date

FEBRUARY 2024

Scale


AS INDICATED

Job No

22-279

Figure No

FIGURE 7



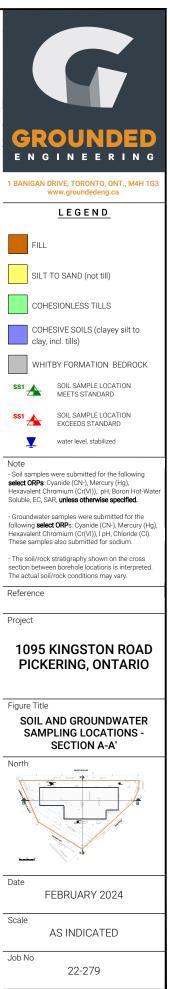
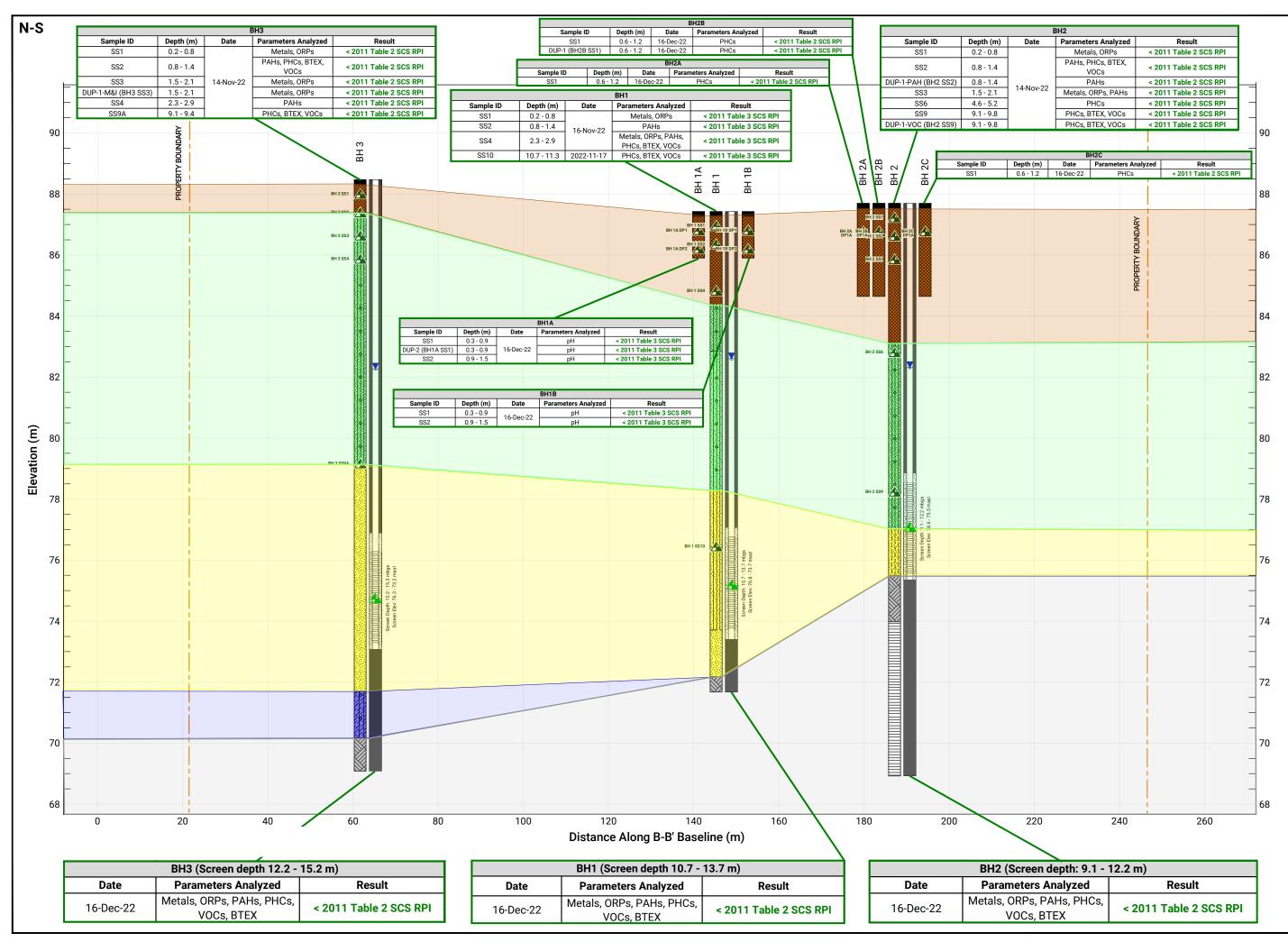




FIGURE 8

Figure No



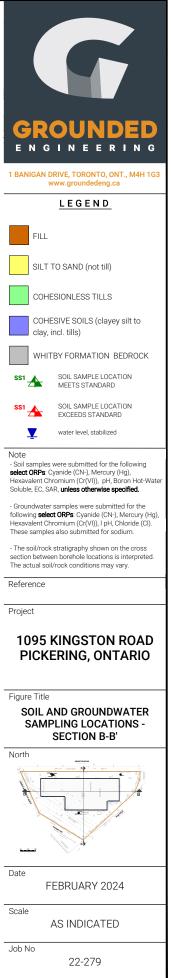
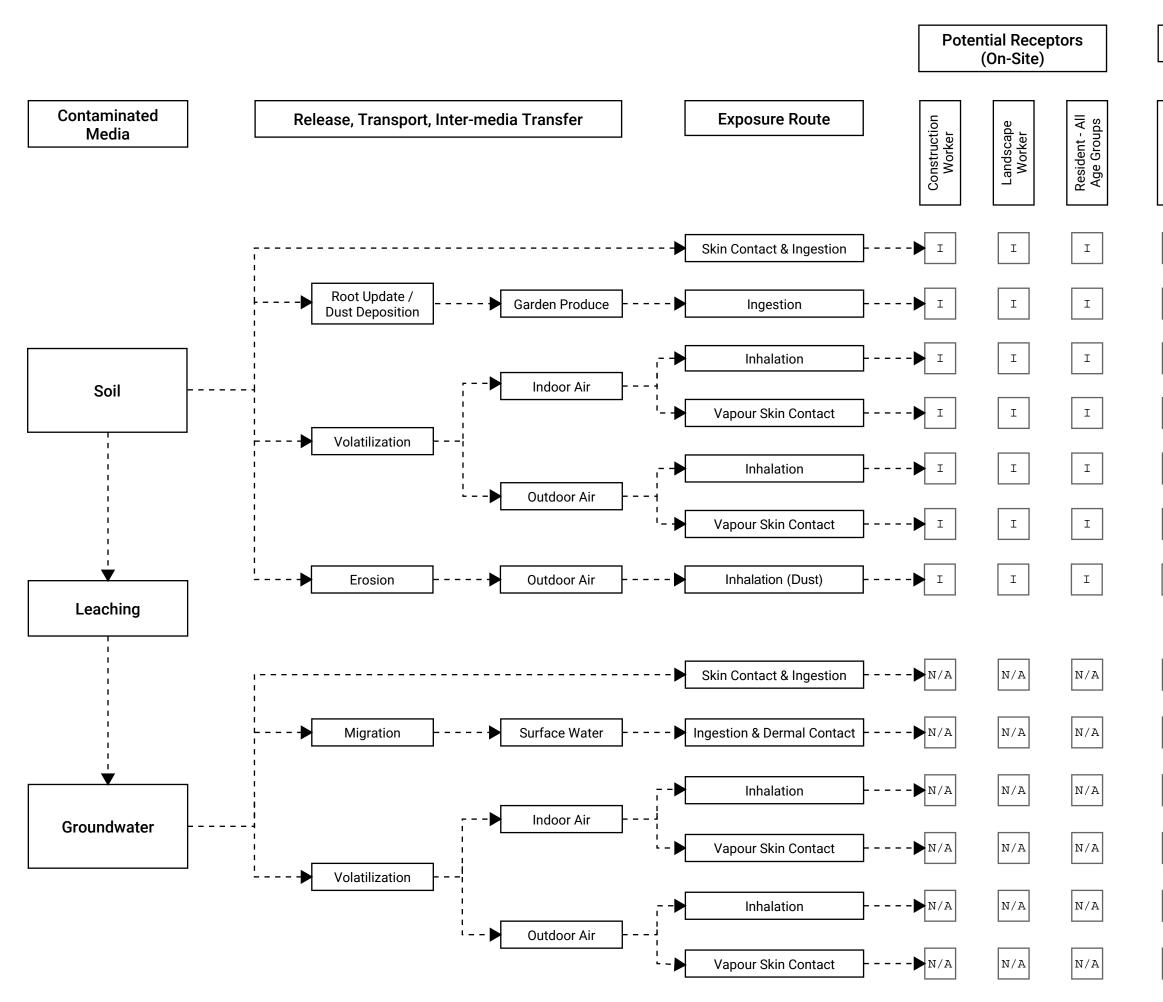
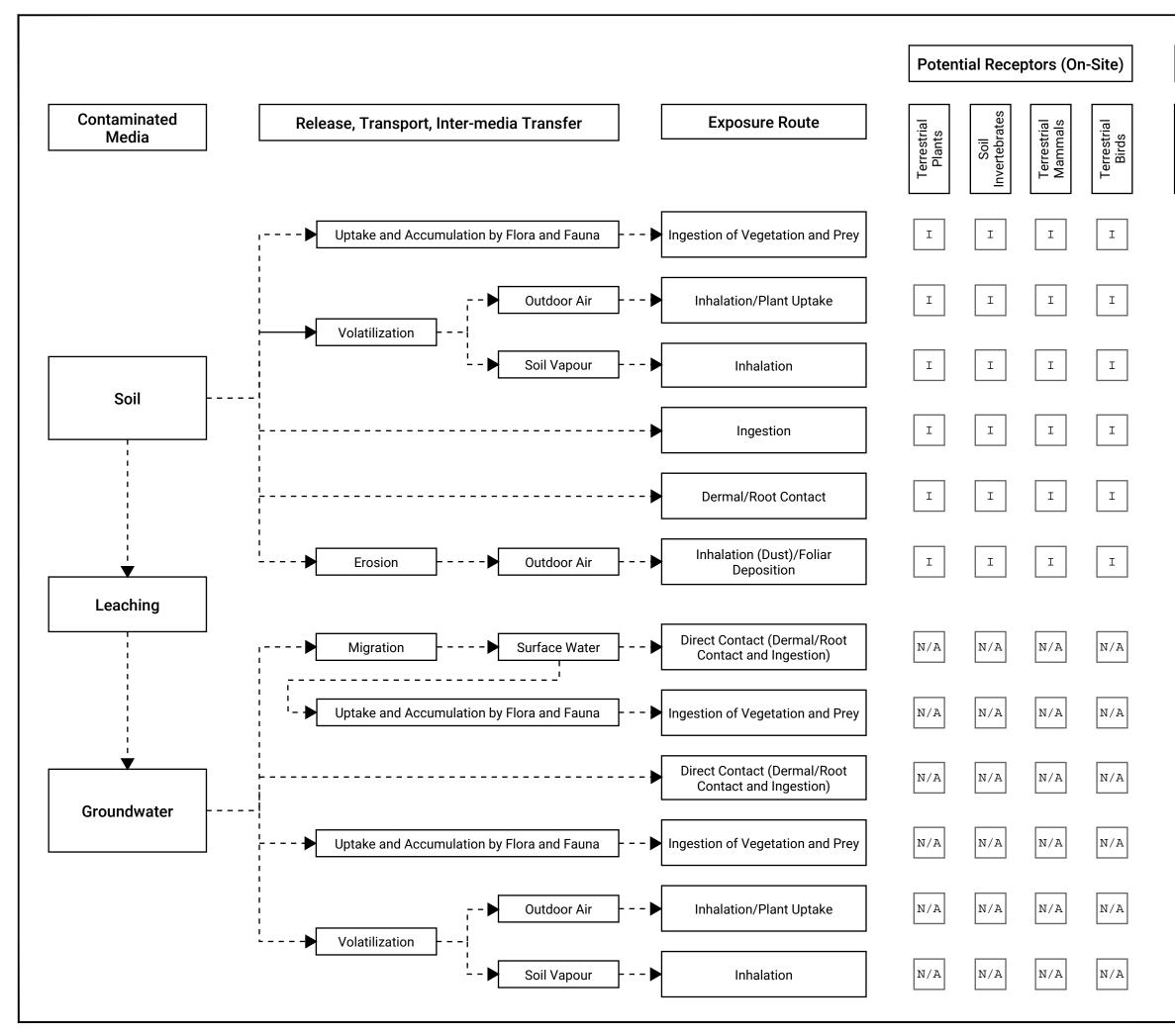





FIGURE 9

Figure No



| Potent                 | tial Recep          | otors (Of  | f-Site)                 |                                                                                                                                     |
|------------------------|---------------------|------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Construction<br>Worker | Landscape<br>Worker | Resident   | Recreational<br>Visitor | <b>GROUNDED</b><br>E N G I N E E R I N G<br>1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3<br>www.groundedeng.ca                           |
| N/A                    | N/A                 | N/A        | N/A                     | C Pathway Complete                                                                                                                  |
| N/A                    | N/A                 | N/A        | N/A                     | I   Pathway Incomplete     X   Pathway Blocked                                                                                      |
| N/A                    | N/A                 | N/A        | N/A                     | N/A Pathway Not Applicable for Receptor                                                                                             |
| N/A                    | N/A                 | N/A        | N/A                     | <ul> <li>Pathway Completed</li> <li>Pathway Incompleted</li> </ul>                                                                  |
| N/A                    | N/A                 | N/A        | N/A                     | Note<br>1. Constructions Workers are considered<br>protective of Utility Workers                                                    |
| N/A                    | N/A                 | N/A        | N/A                     | <ul> <li>2.Landscape Workers are considered protective of Trespassers</li> <li>2. Residents are considered protective of</li> </ul> |
| N/A                    | N/A                 | N/A        | N/A                     | 3. Residents are considered protective of<br>Long Term Workers, Short Term Works<br>and Site Visitors                               |
| N/A<br>N/A             | N/A<br>N/A          | N/A<br>N/A | N/A<br>N/A              | 1095 KINGSTON ROAD<br>PICKERING, ONTARIO,<br>L1V 1B5<br>Figure Title<br>HUMAN HEALTH<br>CSM                                         |
| N/A                    | N/A                 | N/A        | N/A                     |                                                                                                                                     |
| N/A                    | N/A                 | N/A        | N/A                     | Date                                                                                                                                |
| N/A                    | N/A                 | N/A        | N/A                     | FEBRUARY 2024<br>Scale<br>N/A                                                                                                       |
| N/A                    | N/A                 | N/A        | N/A                     | Job No<br>22-279<br>Figure No<br>FIGURE 10                                                                                          |



| Potent                | ial Rece              | otors (Of              | f-Site)              |                                                                                                                                                                          |
|-----------------------|-----------------------|------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terrestrial<br>Plants | Soil<br>Invertebrates | Terrestrial<br>Mammals | Terrestrial<br>Birds | <b>GROUNDED</b><br>E N G I N E E R I N G<br>1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3<br>www.groundedeng.ca                                                                |
| N/A                   | N/A                   | N/A                    | N/A                  | C Pathway Complete                                                                                                                                                       |
| N/A                   | N/A                   | N/A                    | N/A                  | I Pathway Incomplete                                                                                                                                                     |
| N/A                   | N/A                   | N/A                    | N/A                  | X     Pathway Blocked       N/A     Pathway Not Applicable for Receptor                                                                                                  |
| N/A                   | N/A                   | N/A                    | N/A                  | <ul> <li>Pathway Completed</li> <li>Pathway Incompleted</li> </ul>                                                                                                       |
| N/A                   | N/A                   | N/A                    | N/A                  | Note<br>1. Constructions Workers are considered<br>protective of Utility Workers                                                                                         |
| N/A                   | N/A                   | N/A                    | N/A                  | 2.Landscape Workers are considered<br>protective of Trespassers<br>3. Residents are considered protective of<br>Long Term Workers, Short Term Works<br>and Site Visitors |
| N/A                   | N/A                   | N/A                    | N/A                  | Project<br>1095 KINGSTON ROAD<br>PICKERING, ONTARIO,<br>L1V 1B5                                                                                                          |
| N/A                   | N/A                   | N/A                    | N/A                  | Figure Title<br>ECOLOGICAL<br>CSM                                                                                                                                        |
| N/A                   | N/A                   | N/A                    | N/A                  | Reference                                                                                                                                                                |
| N/A                   | N/A                   | N/A                    | N/A                  |                                                                                                                                                                          |
| N/A                   | N/A                   | N/A                    | N/A                  | Date<br>FEBRUARY 2024<br>Scale                                                                                                                                           |
| N/A                   | N/A                   | N/A                    | N/A                  | N/A<br>Job No<br>22-279<br>Figure No<br>FIGURE 11                                                                                                                        |





### TABLE 1 GROUNDWATER LEVEL MONITORING SUMMARY 1095 KINGSTON ROAD PICKERING, ON PROJECT #22-279

|         |                     |                    |                    |                                  | Grounded Engineering |            |         |          |         |          | Minimum Elev. |        | Maximum Elev. |        | Seasonal    |
|---------|---------------------|--------------------|--------------------|----------------------------------|----------------------|------------|---------|----------|---------|----------|---------------|--------|---------------|--------|-------------|
| Well ID | Ground<br>Surface   | Screen<br>Interval | Screen<br>Interval | Soil Strata                      | Novembe              | r 23, 2022 | January | 12, 2024 | January | 16, 2024 | (Low          |        | (High         |        | Fluctuation |
|         | Elevation<br>(masl) | (mbgs)             | (masl)             |                                  | (mbgs)               | (masl)     | (mbgs)  | (masl)   | (mbgs)  | (masl)   | (mbgs)        | (masl) | (mbgs)        | (masl) | (±m)        |
| BH1     | 87.4                | 10.7 - 13.7        | 76.8 - 73.7        | Sand and Silt Till/Sand          | 5.3                  | 82.1       | 5.0     | 82.4     | 4.9     | 82.5     | 5.3           | 82.1   | 4.9           | 82.5   | 0.22        |
| BH2     | 87.7                | 9.1 - 12.2         | 78.6 - 75.5        | Sand and Silt Till/Silty<br>Sand | 5.8                  | 81.9       | 5.3     | 82.4     | 5.4     | 82.3     | 5.8           | 81.9   | 5.3           | 82.4   | 0.23        |
| ВНЗ     | 88.5                | 12.2 - 15.2        | 76.3 - 73.2        | Sand                             | 6.5                  | 82.0       | 6.2     | 82.3     | 6.2     | 82.3     | 6.5           | 82.0   | 6.2           | 82.3   | 0.16        |

mbgs = metres below existing ground surface

masl = metres above sea level

\* = unstabilized groundwater level

NA = not available: unable to access monitoring well

## Table 2.1: Summary of Soil Quality ResultsMetals and Other Regulated Parameters1095 Kingston Road, Pickering

| Sample ID                                |              |          |               |                          | BH1 SS1       | BH1 SS4     | BH1A SS1      | DUP-2           | BH1A SS2      | BH1B SS1      | BH1B SS2    | BH2 SS1       | BH2 SS3     |
|------------------------------------------|--------------|----------|---------------|--------------------------|---------------|-------------|---------------|-----------------|---------------|---------------|-------------|---------------|-------------|
| Sample Note                              |              |          |               |                          |               |             |               | dup of BH1A SS1 |               |               |             |               |             |
| Sample Depth (m)                         |              | Units    | Maximum       | Maximum<br>Concentration | 0.2 - 0.8     | 2.3 - 2.9   | 0.3 - 0.9     | 0.3 - 0.9       | 0.9 - 1.5     | 0.3 - 0.9     | 0.9 - 1.5   | 0.2 - 0.8     | 1.5 - 2.1   |
| Sample Elevation (mASL/mAAD)             | RPI Med/Fine | Units    | Concentration | Sample ID                | 87.3 - 86.7   | 85.1 - 84.5 | 87.1 - 86.5   | 87.1 - 86.5     | 86.5 - 85.9   | 87.1 - 86.5   | 86.5 - 85.9 | 87.5 - 86.9   | 86.2 - 85.6 |
| Lab Job #                                |              |          |               | Sample ID                | CA40233-NOV22 |             | CA40183-DEC22 | CA40183-DEC22   | CA40183-DEC22 | CA40183-DEC22 |             | CA40212-NOV22 |             |
| Sampling Date                            |              |          |               |                          | 2022-11-16    | 2022-11-16  | 2022-12-16    | 2022-12-16      | 2022-12-16    | 2022-12-16    | 2022-12-16  | 2022-11-14    | 2022-11-14  |
| Site Sensitivity (pH)                    |              |          |               |                          |               |             |               |                 |               |               |             |               |             |
| pH (surface soil, <1.5m)                 | 5 to 9       | unitless | 8-11          | DUP-2/BH1 SS1            | 9             |             | 8             | 8               | 8             | 8             | 8           | 8             |             |
| pH (subsurface soil, >1.5m)              | 5 to 11      | unitless | 8-8           | JP-1-M&I/BH1 S           |               | 8           |               |                 |               |               |             |               | 8           |
| Metals                                   |              |          |               |                          |               |             |               |                 |               |               |             |               |             |
| Barium                                   | 390          | µg/g     | 260           | BH2 SS1                  | 86            | 65          |               |                 |               |               |             | 260           | 98          |
| Beryllium                                | 5            | µg/g     | 0.45          | BH1 SS1                  | 0.45          | 0.28        |               |                 |               |               |             | 0.18          | 0.41        |
| Boron (total)                            | 120          | µg/g     | 18            | BH1 SS4                  | 17            | 18          |               |                 |               |               |             | 4             | 7           |
| Cadmium                                  | 1.2          | µg/g     | 0.13          | BH1 SS4                  | 0.11          | 0.13        |               |                 |               |               |             | <0.05         | 0.05        |
| Chromium (total)                         | 160          | µg/g     | 16            | Multiple                 | 16            | 9.3         |               |                 |               |               |             | 5.9           | 16          |
| Cobalt                                   | 22           | µg/g     | 6.2           | BH2 SS3                  | 4.3           | 6           |               |                 |               |               |             | 2.7           | 6.2         |
| Copper                                   | 180          | µg/g     | 14            | BH2 SS3                  | 13            | 12          |               |                 |               |               |             | 6.2           | 14          |
| Lead                                     | 120          | µg/g     | 15            | BH1 SS1                  | 15            | 8.6         |               |                 |               |               |             | 12            | 7.2         |
| Molybdenum                               | 6.9          | µg/g     | 1             | BH1 SS1                  | 1             | 0.5         |               |                 |               |               |             | 0.6           | 0.2         |
| Nickel                                   | 130          | µg/g     | 15            | BH1 SS4                  | 11            | 15          |               |                 |               |               |             | 8.8           | 14          |
| Silver                                   | 25           | µg/g     | <0.05         | Multiple                 | <0.05         | <0.05       |               |                 |               |               |             | < 0.05        | < 0.05      |
| Thallium                                 | 1            | µg/g     | 0.18          | BH2 SS1                  | 0.09          | 0.16        |               |                 |               |               |             | 0.18          | 0.17        |
| Uranium                                  | 23           | µg/g     | 0.84          | BH2 SS3                  | 0.65          | 0.53        |               |                 |               |               |             | 0.54          | 0.84        |
| Vanadium                                 | 86           | µg/g     | 23            | BH2 SS3                  | 20            | 13          |               |                 |               |               |             | 6             | 23          |
| Zinc                                     | 340          | µg/g     | 40            | BH1 SS1                  | 40            | 32          |               |                 |               |               |             | 10            | 33          |
| Hydride-forming Metals                   |              |          |               |                          |               |             |               |                 |               |               |             |               |             |
| Antimony                                 | 7.5          | µg/g     | <0.8          | Multiple                 | <0.8          | <0.8        |               |                 |               |               |             | <0.8          | <0.8        |
| Arsenic                                  | 18           | µg/g     | 2.7           | BH1 SS1                  | 2.7           | 2.2         |               |                 |               |               |             | 2             | 2.4         |
| Selenium                                 | 2.4          | µg/g     | <0.7          | Multiple                 | <0.7          | <0.7        |               |                 |               |               |             | <0.7          | <0.7        |
| Petroleum Hydrocarbons F4+F4g            | 5600         | µg/g     | 2833          | BH2 SS2                  |               |             |               |                 |               |               |             |               |             |
| <b>ORPs - Other Regulated Parameters</b> |              |          |               |                          |               |             |               |                 |               |               |             |               |             |
| Boron (Hot Water Soluble)                | 1.5          | µg/g     | <0.5          | Multiple                 | <0.5          | <0.5        |               |                 |               |               |             | <0.5          | <0.5        |
| Chromium VI                              | 10           | µg/g     | 0.2           | Multiple                 | 0.2           | <0.2        |               |                 |               |               |             | <0.2          | <0.2        |
| Cyanide (CN-)                            | 0.051        | µg/g     | <0.05         | Multiple                 | <0.05         | <0.05       |               |                 |               |               |             | <0.05         | <0.05       |
| Electrical Conductivity (EC)             | 0.7          | mS/cm    | 1.8           | BH1 SS1                  | 1.8           | 0.73        |               |                 |               |               |             | 0.6           | 0.48        |
| Mercury                                  | 1.8          | µg/g     | <0.05         | Multiple                 | <0.05         | <0.05       |               |                 |               |               |             | <0.05         | <0.05       |
| Sodium Adsorption Ratio (SAR)            | 5            | unitless | 11.3          | BH1 SS4                  | 1.3           | 11.3        |               |                 |               |               |             | 5.3           | 1.4         |

#### Notes:

Blanks indicate not analysed.

'NV ' : No Standard established

Table 2 SCS RPI Med/Fine means Table 2: Full Depth Generic Site Condition Standards for Soil for Residential/ Parkland/ Institutional Property Uses. Medium to fine soil texture. Per Ontario Ministry of the Environment document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," March 2004, amended July 1, 2011. #N/A

|                  | Exceeds Table 2 SCS RPI Med/Fine                                        |
|------------------|-------------------------------------------------------------------------|
| 100 (shade fill) | The QP deemed the parameter to be met as per the O.Reg. 153/04 Sec 49.1 |
| 100 (underlined) | Detection Limit Exceeds Table 2 SCS RPI Med/Fine                        |
| 100 (italicized) | #N/A                                                                    |

# Table 2.1: Summary of Soil Quality ResultsMetals and Other Regulated Parameters1095 Kingston Road, Pickering

| Sample ID<br>Sample Note                                                                      |                             |          |                          |                                       | BH3 SS1                                                 | BH3 SS3                                                 | DUP-1-M&I<br>dup of BH3 SS3 |
|-----------------------------------------------------------------------------------------------|-----------------------------|----------|--------------------------|---------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------|
| Sample Pote<br>Sample Depth (m)<br>Sample Elevation (mASL/mAAD)<br>Lab Job #<br>Sampling Date | Table 2 SCS<br>RPI Med/Fine | Units    | Maximum<br>Concentration | Maximum<br>Concentration<br>Sample ID | 0.2 - 0.8<br>88.3 - 87.7<br>CA40212-NOV22<br>2022-11-14 | 1.5 - 2.1<br>86.9 - 86.3<br>CA40212-NOV22<br>2022-11-14 | 1.5 - 2.1<br>86.9 - 86.3    |
| Site Sensitivity (pH)                                                                         |                             |          |                          |                                       |                                                         |                                                         |                             |
| pH (surface soil, <1.5m)                                                                      | 5 to 9                      | unitless | 8-11                     | DUP-2/BH1 SS1                         | 8                                                       |                                                         |                             |
| pH (subsurface soil, >1.5m)                                                                   | 5 to 11                     | unitless | 8-8                      | JP-1-M&I/BH1 S                        |                                                         | 8                                                       | 8                           |
| Metals                                                                                        |                             |          |                          |                                       |                                                         |                                                         |                             |
| Barium                                                                                        | 390                         | µg/g     | 260                      | BH2 SS1                               | 24                                                      | 54                                                      | 52                          |
| Beryllium                                                                                     | 5                           | µg/g     | 0.45                     | BH1 SS1                               | 0.23                                                    | 0.26                                                    | 0.27                        |
| Boron (total)                                                                                 | 120                         | µg/g     | 18                       | BH1 SS4                               | 7                                                       | 5                                                       | 5                           |
| Cadmium                                                                                       | 1.2                         | µg/g     | 0.13                     | BH1 SS4                               | 0.05                                                    | <0.05                                                   | <0.05                       |
| Chromium (total)                                                                              | 160                         | µg/g     | 16                       | Multiple                              | 7.8                                                     | 11                                                      | 11                          |
| Cobalt                                                                                        | 22                          | µg/g     | 6.2                      | BH2 SS3                               | 3.4                                                     | 3.7                                                     | 3.8                         |
| Copper                                                                                        | 180                         | µg/g     | 14                       | BH2 SS3                               | 6.9                                                     | 8.3                                                     | 8.6                         |
| Lead                                                                                          | 120                         | µg/g     | 15                       | BH1 SS1                               | 6.7                                                     | 4.1                                                     | 4.2                         |
| Molybdenum                                                                                    | 6.9                         | µg/g     | 1                        | BH1 SS1                               | 0.3                                                     | 0.2                                                     | 0.1                         |
| Nickel                                                                                        | 130                         | µg/g     | 15                       | BH1 SS4                               | 8                                                       | 8.5                                                     | 8.3                         |
| Silver                                                                                        | 25                          | µg/g     | <0.05                    | Multiple                              | <0.05                                                   | <0.05                                                   | <0.05                       |
| Thallium                                                                                      | 1                           | µg/g     | 0.18                     | BH2 SS1                               | 0.1                                                     | 0.1                                                     | 0.09                        |
| Uranium                                                                                       | 23                          | µg/g     | 0.84                     | BH2 SS3                               | 0.5                                                     | 0.67                                                    | 0.72                        |
| Vanadium                                                                                      | 86                          | µg/g     | 23                       | BH2 SS3                               | 9                                                       | 17                                                      | 17                          |
| Zinc                                                                                          | 340                         | µg/g     | 40                       | BH1 SS1                               | 16                                                      | 21                                                      | 23                          |
| Hydride-forming Metals                                                                        |                             |          |                          |                                       |                                                         |                                                         |                             |
| Antimony                                                                                      | 7.5                         | µg/g     | <0.8                     | Multiple                              | <0.8                                                    | <0.8                                                    | <0.8                        |
| Arsenic                                                                                       | 18                          | µg/g     | 2.7                      | BH1 SS1                               | 1.9                                                     | 1.1                                                     | 1.1                         |
| Selenium                                                                                      | 2.4                         | µg/g     | <0.7                     | Multiple                              | <0.7                                                    | <0.7                                                    | <0.7                        |
| Petroleum Hydrocarbons F4+F4g                                                                 | 5600                        | µg/g     | 2833                     | BH2 SS2                               |                                                         |                                                         |                             |
| <b>ORPs - Other Regulated Parameters</b>                                                      |                             |          |                          |                                       |                                                         |                                                         |                             |
| Boron (Hot Water Soluble)                                                                     | 1.5                         | µg/g     | <0.5                     | Multiple                              | <0.5                                                    | <0.5                                                    | <0.5                        |
| Chromium VI                                                                                   | 10                          | µg/g     | 0.2                      | Multiple                              | <0.2                                                    | <0.2                                                    | <0.2                        |
| Cyanide (CN-)                                                                                 | 0.051                       | µg/g     | <0.05                    | Multiple                              | <0.05                                                   | <0.05                                                   | <0.05                       |
| Electrical Conductivity (EC)                                                                  | 0.7                         | mS/cm    | 1.8                      | BH1 SS1                               | 1                                                       | 0.62                                                    | 0.52                        |
| Mercury                                                                                       | 1.8                         | µg/g     | <0.05                    | Multiple                              | <0.05                                                   | <0.05                                                   | <0.05                       |
| Sodium Adsorption Ratio (SAR)                                                                 | 5                           | unitless | 11.3                     | BH1 SS4                               | 7.1                                                     | 5.1                                                     | 5.3                         |

#### Notes:

Blanks indicate not analysed.

'NV ' : No Standard established

Table 2 SCS RPI Med/Fine means Table 2: Full Depth Generic Site Condition Standards for Soil for Residential/ Parkland/ Institutional Property Uses. Medium to fine soil texture. Per Ontario Ministry of the Environment document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011. #N/A

|                  | Exceeds Table 2 SCS RPI Med/Fine                        |
|------------------|---------------------------------------------------------|
| 100 (shade fill) | The QP deemed the parameter to be met as per the O.Reg. |
| 100 (underlined) | Detection Limit Exceeds Table 2 SCS RPI Med/Fine        |
| 100 (italicized) | #N/A                                                    |

Page 2 of 2 2023-03-28

# Table 2.2: Summary of Soil Quality ResultsPolycyclic Aromatic Hydrocarbons1095 Kingston Road, Pickering

| Sample ID<br>Sample Note<br>Sample Depth (m)<br>Sample Elevation (mASL/mAAD)<br>Lab Job<br>Sampling Date<br>PAHs - Polycyclic Aromatic Hydrocarbo | Table 2 SCS<br>RPI Med/Fine | Units | Maximum<br>Concentration | Maximum<br>Concentration<br>Sample ID | BH1 SS2<br>0.8 - 1.4<br>86.7 - 86.1<br>CA40233-NOV22<br>2022-11-16 | BH1 SS4<br>2.3 - 2.9<br>85.1 - 84.5<br>CA40233-NOV22<br>2022-11-16 | BH2 SS2<br>0.8 - 1.4<br>86.9 - 86.3<br>CA40212-NOV22<br>2022-11-14 | DUP-1-PAH<br>dup of BH2 SS2<br>0.8 - 1.4<br>86.9 - 86.3<br>CA40212-N0V22<br>2022-11-14 | BH2 SS3<br>1.5 - 2.1<br>86.2 - 85.6<br>CA40212-NOV22<br>2022-11-14 | BH3 SS2<br>0.8 - 1.4<br>87.7 - 87.1<br>CA40212-NOV22<br>2022-11-14 | BH3 SS4<br>2.3 - 2.9<br>86.2 - 85.6<br>CA40212-NOV22<br>2022-11-14 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|--------------------------|---------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Acenaphthene                                                                                                                                      | 29                          | µg/g  | < 0.05                   | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | <0.05                                                                                  | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Acenaphthylene                                                                                                                                    | 0.17                        | µg/g  | < 0.05                   | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | <0.05                                                                                  | < 0.05                                                             | < 0.05                                                             | < 0.05                                                             |
| Anthracene                                                                                                                                        | 0.74                        | µg/g  | <0.05                    | Multiple                              | < 0.05                                                             | < 0.05                                                             | < 0.05                                                             | < 0.05                                                                                 | < 0.05                                                             | < 0.05                                                             | < 0.05                                                             |
| Benz[a]anthracene                                                                                                                                 | 0.63                        | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | < 0.05                                                             | <0.05                                                              | < 0.05                                                                                 | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Benzo[a]pyrene                                                                                                                                    | 0.3                         | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | <0.05                                                                                  | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Benzo[b]fluoranthene                                                                                                                              | 0.78                        | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | <0.05                                                                                  | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Benzo[ghi]perylene                                                                                                                                | 7.8                         | µg/g  | <0.1                     | Multiple                              | <0.1                                                               | <0.1                                                               | <0.1                                                               | <0.1                                                                                   | <0.1                                                               | <0.1                                                               | <0.1                                                               |
| Benzo[k]fluoranthene                                                                                                                              | 0.78                        | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | < 0.05                                                                                 | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Chrysene                                                                                                                                          | 7.8                         | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | < 0.05                                                                                 | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Dibenz[a,h]anthracene                                                                                                                             | 0.1                         | µg/g  | <0.06                    | Multiple                              | <0.06                                                              | <0.06                                                              | <0.06                                                              | <0.06                                                                                  | <0.06                                                              | <0.06                                                              | <0.06                                                              |
| Fluoranthene                                                                                                                                      | 0.69                        | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | < 0.05                                                                                 | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Fluorene                                                                                                                                          | 69                          | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | < 0.05                                                                                 | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Indeno[1,2,3-cd]pyrene                                                                                                                            | 0.48                        | µg/g  | <0.1                     | Multiple                              | <0.1                                                               | <0.1                                                               | <0.1                                                               | <0.1                                                                                   | <0.1                                                               | <0.1                                                               | <0.1                                                               |
| Methlynaphthalene, 2-(1-)                                                                                                                         | 3.4                         | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | < 0.05                                                                                 | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Methylnaphthalene, 1-                                                                                                                             | NV                          | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | <0.05                                                                                  | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Methylnaphthalene, 2-                                                                                                                             | NV                          | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | <0.05                                                                                  | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Naphthalene                                                                                                                                       | 0.75                        | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | <0.05                                                                                  | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Phenanthrene                                                                                                                                      | 7.8                         | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | < 0.05                                                                                 | <0.05                                                              | <0.05                                                              | <0.05                                                              |
| Pyrene                                                                                                                                            | 78                          | µg/g  | <0.05                    | Multiple                              | <0.05                                                              | <0.05                                                              | <0.05                                                              | < 0.05                                                                                 | <0.05                                                              | <0.05                                                              | <0.05                                                              |

#### Notes:

Blanks indicate not analysed.

'NV ' : No Standard established

Table 2 SCS RPI Med/Fine means Table 2: Full Depth Generic Site Condition Standards for Soil for Residential/ Parkland/ Institutional Property Uses. Medium to fine soil texture. Per Ontario Ministry of the Environment document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," March 2004, amended July 1, #N/A

| 100 (shaded fill) | Exceeds Table 2 SCS RPI Med/Fine                 |
|-------------------|--------------------------------------------------|
| 100 (bolded)      | #N/A                                             |
| 100 (underlined)  | Detection Limit Exceeds Table 2 SCS RPI Med/Fine |
| 100 (italicized)  | #N/A                                             |

# Table 2.3: Summary of Soil Quality ResultsPetroleum Hydrocarbons and BTEX1095 Kingston Road, Pickering

| ыII. |
|------|
| - C  |

| Sample ID                                |              |       |               |               | BH1 SS4       | BH1 SS10      | BH2 SS2       | BH2 SS6       | BH2 SS9       | DUP-1-VOC      | BH2A SS1      | BH2B SS1      | DUP-1           |
|------------------------------------------|--------------|-------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|-----------------|
| Sample Note                              |              |       |               | Maximum       |               |               |               |               |               | dup of BH2 SS9 |               |               | dup of BH2B SS1 |
| Sample Depth (m)                         |              | Units | Maximum       | Concentration | 2.3 - 2.9     | 10.7 - 11.3   | 0.8 - 1.4     | 4.6 - 5.2     | 9.1 - 9.8     | 9.1 - 9.8      | 0.6 - 1.2     | 0.6 - 1.2     | 0.6 - 1.2       |
| Sample Elevation (mASL/mAAD)             | RPI Med/Fine |       | Concentration | Sample ID     | 85.1 - 84.5   | 76.8 - 76.1   | 86.9 - 86.3   | 83.1 - 82.5   | 78.6 - 77.9   | 78.6 - 77.9    | 87.1 - 86.5   | 87.1 - 86.5   | 87.1 - 86.5     |
| Lab Job #                                |              |       |               |               | CA40233-NOV22 | CA40233-NOV22 | CA40212-NOV22 | CA14017-DEC22 | CA40212-NOV22 | CA40212-NOV22  | CA40184-DEC22 | CA40184-DEC22 | CA40184-DEC22   |
| Sampling Date                            |              |       |               |               | 2022-11-16    | 2022-11-17    | 2022-11-14    | 2022-11-14    | 2022-11-14    | 2022-11-14     | 2022-12-16    | 2022-12-16    | 2022-12-16      |
| BTEX - Benzene, Toluene, Ethylbenzene, X | ylene        |       |               |               |               |               |               |               |               |                |               |               |                 |
| Benzene                                  | 0.17         | µg/g  | < 0.02        | Multiple      | <0.02         | <0.02         | <0.02         | <0.02         | <0.02         | <0.02          |               |               |                 |
| Ethylbenzene                             | 1.6          | µg/g  | <0.05         | Multiple      | <0.05         | < 0.05        | <0.05         | < 0.05        | < 0.05        | < 0.05         |               |               |                 |
| Toluene                                  | 6            | µg/g  | <0.05         | Multiple      | < 0.05        | < 0.05        | < 0.05        | <0.05         | <0.05         | < 0.05         |               |               |                 |
| Xylene Mixture                           | 25           | µg/g  | < 0.05        | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          |               |               |                 |
| Xylene, m- & p-                          | NV           | µg/g  | <0.05         | Multiple      | <0.05         | < 0.05        | <0.05         | <0.05         | <0.05         | <0.05          |               |               |                 |
| Xylene, o-                               | NV           | µg/g  | < 0.05        | Multiple      | <0.05         | <0.05         | <0.05         | < 0.05        | < 0.05        | <0.05          |               |               |                 |
| PHCs - Petroleum Hydrocarbons            |              |       |               |               |               |               |               |               |               |                |               |               |                 |
| Petroleum Hydrocarbons F1-BTEX           | NV           | µg/g  | <10           | Multiple      | <10           | <10           | <10           | <10           | <10           | <10            | <10           | <10           | <10             |
| Petroleum Hydrocarbons F1                | 65           | µg/g  | <10           | Multiple      | <10           | <10           | <10           | <10           | <10           | <10            | <10           | <10           | <10             |
| Petroleum Hydrocarbons F2                | 150          | µg/g  | 18            | BH1 SS10      | <10           | 18            | <10           | <10           | <10           | <10            | <10           | <10           | <10             |
| Petroleum Hydrocarbons F3                | 1300         | µg/g  | 331           | BH2 SS2       | <50           | 90            | 331           | <50           | <50           | <50            | <50           | 63            | <50             |
| Petroleum Hydrocarbons F4                | 5600         | µg/g  | 673           | BH2 SS2       | 53            | <50           | 673           | <50           | <50           | <50            | <50           | 77            | <50             |

#### Notes:

Blanks indicate not analysed.

'NV ': No Standard established

Table 2 SCS RPI Med/Fine means Table 2: Full Depth Generic Site Condition Standards for Soil for Residential/ Parkland/ Institutional Property Uses. Medium to fine soil texture. Per Ontario Ministry of the Environment document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," March 2004, amended July 1, #N/A

| 100 (shaded fill) | Exceeds Table 2 SCS RPI Med/Fine                 |
|-------------------|--------------------------------------------------|
| 100 (bolded)      | #N/A                                             |
| 100 (underlined)  | Detection Limit Exceeds Table 2 SCS RPI Med/Fine |
| 100 (italicized)  | #N/A                                             |

# Table 2.3: Summary of Soil Quality ResultsPetroleum Hydrocarbons and BTEX1095 Kingston Road, Pickering

| Sample ID<br>Sample Note<br>Sample Depth (m)<br>Sample Elevation (mASL/mAAD)<br>Lab Job #<br>Sampling Date<br>Sampling Date | Table 2 SCS<br>RPI Med/Fine | Units | Maximum<br>Concentration | Maximum<br>Concentration<br>Sample ID | 87.1 - 86.5 | BH3 SS2<br>0.8 - 1.4<br>87.7 - 87.1<br>CA40212-NOV22<br>2022-11-14 | BH3 SS9A<br>9.1 - 9.4<br>79.3 - 79.0<br>CA40212-NOV22<br>2022-11-14 |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|--------------------------|---------------------------------------|-------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| BTEX - Benzene, Toluene, Ethylbenzene, X                                                                                    | ylene                       |       |                          |                                       |             |                                                                    |                                                                     |
| Benzene                                                                                                                     | 0.17                        | µg/g  | <0.02                    | Multiple                              |             | <0.02                                                              | <0.02                                                               |
| Ethylbenzene                                                                                                                | 1.6                         | µg/g  | <0.05                    | Multiple                              |             | <0.05                                                              | <0.05                                                               |
| Toluene                                                                                                                     | 6                           | µg/g  | <0.05                    | Multiple                              |             | <0.05                                                              | <0.05                                                               |
| Xylene Mixture                                                                                                              | 25                          | µg/g  | < 0.05                   | Multiple                              |             | < 0.05                                                             | <0.05                                                               |
| Xylene, m- & p-                                                                                                             | NV                          | µg/g  | <0.05                    | Multiple                              |             | <0.05                                                              | <0.05                                                               |
| Xylene, o-                                                                                                                  | NV                          | µg/g  | <0.05                    | Multiple                              |             | <0.05                                                              | <0.05                                                               |
| PHCs - Petroleum Hydrocarbons                                                                                               |                             |       |                          |                                       |             |                                                                    |                                                                     |
| Petroleum Hydrocarbons F1-BTEX                                                                                              | NV                          | µg/g  | <10                      | Multiple                              | <10         | <10                                                                | <10                                                                 |
| Petroleum Hydrocarbons F1                                                                                                   | 65                          | µg/g  | <10                      | Multiple                              | <10         | <10                                                                | <10                                                                 |
| Petroleum Hydrocarbons F2                                                                                                   | 150                         | µg/g  | 18                       | BH1 SS10                              | <10         | <10                                                                | <10                                                                 |
| Petroleum Hydrocarbons F3                                                                                                   | 1300                        | µg/g  | 331                      | BH2 SS2                               | 54          | <50                                                                | <50                                                                 |
| Petroleum Hydrocarbons F4                                                                                                   | 5600                        | µg/g  | 673                      | BH2 SS2                               | <50         | <50                                                                | <50                                                                 |

#### Notes:

Blanks indicate not analysed.

'NV ': No Standard established

Table 2 SCS RPI Med/Fine means Table 2: Full Depth Generic Site Condition Standards for Soil for Residential/ Parkland/ Institutional Property Uses. Medium to fine soil texture. Per Ontario Ministry of the Environment document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," March 2004, amended July 1, #N/A

| 100 (shaded fill) | Exceeds Table 2 SCS RPI Med/Fine                 |
|-------------------|--------------------------------------------------|
| 100 (bolded)      | #N/A                                             |
| 100 (underlined)  | Detection Limit Exceeds Table 2 SCS RPI Med/Fine |
| 100 (italicized)  | #N/A                                             |

## Table 2.4: Summary of Soil Quality ResultsVolatile Organic Compounds and Trihalomethanes1095 Kingston Road, Pickering

| Sample ID                         |                             |       |                          |               | BH1 SS4       | BH1 SS10      | BH2 SS2       | BH2 SS9       | DUP-1-VOC      | BH3 SS2       | BH3 SS9A      |
|-----------------------------------|-----------------------------|-------|--------------------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|
| Sample Note                       | <b>T</b> 11 0 000           |       | <b>.</b> .               | Maximum       |               |               |               |               | dup of BH2 SS9 |               |               |
| Sample Depth (m)                  | Table 2 SCS<br>RPI Med/Fine | Units | Maximum<br>Concentration | Concentration | 2.3 - 2.9     | 10.7 - 11.3   | 0.8 - 1.4     | 9.1 - 9.8     | 9.1 - 9.8      | 0.8 - 1.4     | 9.1 - 9.4     |
| Sample Elevation (mASL/mAAD)      | KFTWed/The                  |       | concentration            | Sample ID     | 85.1 - 84.5   | 76.8 - 76.1   | 86.9 - 86.3   | 78.6 - 77.9   | 78.6 - 77.9    | 87.7 - 87.1   | 79.3 - 79.0   |
| Lab Job #                         |                             |       |                          |               | CA40233-NOV22 | CA40233-NOV22 | CA40212-NOV22 | CA40212-NOV22 | CA40212-NOV22  | CA40212-NOV22 | CA40212-NOV22 |
| THMs - Trihalomethanes            |                             |       |                          |               |               |               |               |               |                |               |               |
| Bromodichloromethane              | 1.9                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | < 0.05         | < 0.05        | <0.05         |
| Bromoform                         | 0.26                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | < 0.05         | < 0.05        | <0.05         |
| Dibromochloromethane              | 2.9                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | < 0.05         | < 0.05        | <0.05         |
| VOCs - Volatile Organic Compounds |                             |       |                          |               |               |               |               |               |                |               |               |
| Acetone                           | 28                          | µg/g  | <0.5                     | Multiple      | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5          | <0.5          |
| Bromomethane                      | 0.05                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | < 0.05        | <0.05         |
| Carbon Tetrachloride              | 0.12                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | < 0.05        | <0.05         |
| Chlorobenzene                     | 2.7                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | < 0.05        | <0.05         |
| Chloroform                        | 0.18                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | < 0.05        | <0.05         |
| Dichlorobenzene, 1,2-             | 1.7                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Dichlorobenzene, 1,3-             | 6                           | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Dichlorobenzene, 1,4-             | 0.097                       | µg/g  | < 0.05                   | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | < 0.05         | <0.05         | <0.05         |
| Dichlorodifluoromethane           | 25                          | µg/g  | < 0.05                   | Multiple      | < 0.05        | < 0.05        | < 0.05        | <0.05         | < 0.05         | < 0.05        | <0.05         |
| Dichloroethane, 1,1-              | 0.6                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | < 0.05        | <0.05         |
| Dichloroethane, 1,2-              | 0.05                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Dichloroethylene, 1,1-            | 0.05                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Dichloroethylene, 1,2-cis-        | 2.5                         | µg/g  | < 0.05                   | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Dichloroethylene, 1,2-trans-      | 0.75                        | µg/g  | < 0.05                   | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Dichloropropane, 1,2-             | 0.085                       | µg/g  | < 0.05                   | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Dichloropropene, 1,3-             | 0.081                       | µg/g  | < 0.05                   | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Dichloropropylene, cis-1,3-       | NV                          | µg/g  | < 0.03                   | Multiple      | <0.03         | <0.03         | <0.03         | <0.03         | <0.03          | <0.03         | <0.03         |
| Dichloropropylene, trans-1,3-     | NV                          | µg/g  | <0.03                    | Multiple      | <0.03         | <0.03         | <0.03         | <0.03         | <0.03          | <0.03         | <0.03         |
| Ethylene dibromide                | 0.05                        | µg/g  | < 0.05                   | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Hexane (n)                        | 34                          | µg/g  | < 0.05                   | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Methyl Ethyl Ketone               | 44                          | µg/g  | <0.5                     | Multiple      | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5          | <0.5          |
| Methyl Isobutyl Ketone            | 4.3                         | µg/g  | <0.5                     | Multiple      | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5          | <0.5          |
| Methyl tert-Butyl Ether (MTBE)    | 1.4                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Methylene Chloride                | 0.96                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Styrene                           | 2.2                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Tetrachloroethane, 1,1,1,2-       | 0.05                        | µg/g  | < 0.05                   | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Tetrachloroethane, 1,1,2,2-       | 0.05                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Tetrachloroethylene               | 2.3                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | < 0.05         | <0.05         | <0.05         |
| Trichloroethane, 1,1,1-           | 3.4                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | < 0.05         | <0.05         | <0.05         |
| Trichloroethane, 1,1,2-           | 0.05                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Trichloroethylene                 | 0.52                        | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | <0.05          | <0.05         | <0.05         |
| Trichlorofluoromethane            | 5.8                         | µg/g  | <0.05                    | Multiple      | <0.05         | <0.05         | <0.05         | <0.05         | < 0.05         | <0.05         | <0.05         |
| Vinyl Chloride                    | 0.022                       | µg/g  | <0.02                    | Multiple      | <0.02         | <0.02         | <0.02         | <0.02         | <0.02          | <0.02         | <0.02         |

#### Notes:

Blanks indicate not analysed.

'NV ' : No Standard established

Table 2 SCS RPI Med/Fine means Table 2: Full Depth Generic Site Condition Standards for Soil for Residential/ Parkland/ Institutional Property Uses. Medium to fine soil texture. Per Ontario Ministry of the Environment document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," March 2004, amended July 1, 2011.

#N/A

| 100 (shaded fill) | Exceeds Table 2 SCS RPI Med/Fine                 |
|-------------------|--------------------------------------------------|
| 100 (bolded)      | #N/A                                             |
| 100 (underlined)  | Detection Limit Exceeds Table 2 SCS RPI Med/Fine |
| 100 (italicized)  | #N/A                                             |

## Table 3.1: Summary of Ground Water Quality ResultsMetals and Other Regulated Parameters1095 Kingston Road, Pickering

| Sample ID<br>Sample Note<br>Screened Depth (m)<br>Screened Interval (mASL/mAAD)<br>Lab Job #<br>Sampling Date<br>Sampling Date | O.Reg.153/04<br>Table 2 | UNITS | Max.<br>Sample<br>Conc. | Max. Conc.<br>Sample ID | BH1<br>10.7 - 13.7<br>76.8 - 73.7<br>CA40185-DEC22<br>2022-12-16 | DUP-1<br>Duplicate of BH1<br>10.7 - 13.7<br>76.8 - 73.7<br>CA40185-DEC22<br>2022-12-16 | BH2<br>9.1 - 12.2<br>78.6 - 75.5<br>CA40185-DEC22<br>2022-12-16 | BH3<br>12.2 - 15.2<br>76.3 - 73.2<br>CA40185-DEC22<br>2022-12-16 |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------------------|-------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
| Metals                                                                                                                         |                         |       |                         |                         |                                                                  |                                                                                        |                                                                 |                                                                  |
| Barium (Ba)                                                                                                                    | 1000                    | µg/L  | 216                     | BH1                     | 216                                                              | 213                                                                                    | 66.8                                                            | 184                                                              |
| Beryllium (Be)                                                                                                                 | 4                       | µg/L  | <0.007                  | Multiple                | <0.007                                                           | <0.007                                                                                 | <0.007                                                          | <0.007                                                           |
| Boron (B)                                                                                                                      | 5000                    | µg/L  | 419                     | DUP-1                   | 376                                                              | 419                                                                                    | 325                                                             | 193                                                              |
| Cadmium (Cd)                                                                                                                   | 2.7                     | µg/L  | 0.006                   | BH2                     | 0.004                                                            | 0.003                                                                                  | 0.006                                                           | <0.003                                                           |
| Chromium (Cr)                                                                                                                  | 50                      | µg/L  | 0.16                    | Multiple                | 0.11                                                             | 0.12                                                                                   | 0.16                                                            | 0.16                                                             |
| Cobalt (Co)                                                                                                                    | 3.8                     | µg/L  | 0.152                   | BH2                     | 0.098                                                            | 0.064                                                                                  | 0.152                                                           | 0.069                                                            |
| Copper (Cu)                                                                                                                    | 87                      | µg/L  | 6.9                     | BH1                     | 6.9                                                              | 0.2                                                                                    | 0.3                                                             | 3.6                                                              |
| Lead (Pb)                                                                                                                      | 10                      | µg/L  | 0.57                    | BH3                     | 0.12                                                             | <0.09                                                                                  | <0.09                                                           | 0.57                                                             |
| Mercury (Hg)                                                                                                                   | 0.29                    | µg/L  | <0.01                   | Multiple                | <0.01                                                            | <0.01                                                                                  | <0.01                                                           | <0.01                                                            |
| Molybdenum (Mo)                                                                                                                | 70                      | µg/L  | 13.7                    | BH2                     | 3.07                                                             | 3.76                                                                                   | 13.7                                                            | 0.93                                                             |
| Nickel (Ni)                                                                                                                    | 100                     | µg/L  | 1                       | BH1                     | 1                                                                | 0.3                                                                                    | 0.7                                                             | 0.4                                                              |
| Silver (Ag)                                                                                                                    | 1.5                     | µg/L  | <0.05                   | Multiple                | <0.05                                                            | <0.05                                                                                  | < 0.05                                                          | <0.05                                                            |
| Thallium (TI)                                                                                                                  | 2                       | µg/L  | 0.015                   | BH2                     | 0.005                                                            | <0.005                                                                                 | 0.015                                                           | <0.005                                                           |
| Thorium (Th)                                                                                                                   | NV                      | µg/L  | 2.72                    | BH2                     | 0.212                                                            | 0.072                                                                                  | 2.72                                                            | 0.072                                                            |
| Tin (Sn)                                                                                                                       | NV                      | µg/L  | 1.82                    | BH2                     | 0.21                                                             | 0.25                                                                                   | 1.82                                                            | 0.25                                                             |
| Titanium (Ti)                                                                                                                  | NV                      | µg/L  | 6                       | Multiple                | 4                                                                | 6                                                                                      | <2                                                              | 6                                                                |
| Uranium (U)                                                                                                                    | 20                      | µg/L  | 2.72                    | BH2                     | 0.212                                                            | 0.214                                                                                  | 2.72                                                            | 0.072                                                            |
| Vanadium (V)                                                                                                                   | 6.2                     | µg/L  | 1.82                    | BH2                     | 0.21                                                             | 0.22                                                                                   | 1.82                                                            | 0.25                                                             |
| Zinc (Zn)                                                                                                                      | 1100                    | µg/L  | 6                       | BH3                     | 4                                                                | <2                                                                                     | <2                                                              | 6                                                                |
| Hydride-forming Metals                                                                                                         |                         |       |                         |                         |                                                                  |                                                                                        |                                                                 |                                                                  |
| Antimony (Sb)                                                                                                                  | 6                       | µg/L  | 1.4                     | BH2                     | <0.9                                                             | <0.9                                                                                   | 1.4                                                             | <0.9                                                             |
| Arsenic (As)                                                                                                                   | 25                      | µg/L  | 3.5                     | BH2                     | 2.4                                                              | 2.3                                                                                    | 3.5                                                             | 0.6                                                              |
| Selenium (Se)                                                                                                                  | 10                      | µg/L  | 0.48                    | BH2                     | 0.14                                                             | 0.12                                                                                   | 0.48                                                            | <0.04                                                            |
| ORPs - Other Regulated Parameters                                                                                              |                         |       |                         |                         |                                                                  |                                                                                        |                                                                 |                                                                  |
| Chloride (Cl-)                                                                                                                 | 790000                  | µg/L  | 70000                   | Multiple                | 70000                                                            | 70000                                                                                  | 53000                                                           | 32000                                                            |
| Chromium VI                                                                                                                    | 25                      | µg/L  | <0.2                    | Multiple                | <0.2                                                             | <0.2                                                                                   | <0.2                                                            | <0.2                                                             |
| Cyanide (CN-)                                                                                                                  | 66                      | µg/L  | <2                      | Multiple                | <2                                                               | <2                                                                                     | <2                                                              | <2                                                               |

#### Notes:

Blanks indicate not analysed. 'NV ' : No Standard established

0.Reg.153/04 Table 2 means 0.Reg.153/04 Table 2 means: Table 2 Full Depth Generic Site Condition Standards for Ground Water for All Types of Property Uses. Coarse-textured soil. Per Ontario Ministry of the Environment, Conservation and Parks document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, as amended. (0.Reg.153/04).

#N/A

| 100 (shaded fill) | Exceeds O.Reg.153/04 Table 2                 |
|-------------------|----------------------------------------------|
| 100 (bolded)      | #N/A                                         |
| <100 (underlined) | Detection Limit Exceeds 0.Reg.153/04 Table 2 |
| <100 (italicized) | #N/A                                         |

Page 1 of 1 2024-01-11

## Table 3.2: Summary of Ground Water Quality ResultsPolycyclic Aromatic Hydrocarbons1095 Kingston Road, Pickering

| Sample ID<br>Sample Note<br>Screened Depth (m)<br>Screened Interval (mASL/mAAD)<br>Lab Job #<br>Sampling Date | O.Reg.153/04<br>Table 2 | UNITS | Max.<br>Sample<br>Conc. | Max. Conc.<br>Sample ID | BH1<br>10.7 - 13.7<br>76.8 - 73.7<br>CA40185-DEC22<br>2022-12-16 | DUP-1<br>Duplicate of BH1<br>10.7 - 13.7<br>76.8 - 73.7<br>CA40185-DEC22<br>2022-12-16 | BH2<br>9.1 - 12.2<br>78.6 - 75.5<br>CA40185-DEC22<br>2022-12-16 | BH3<br>12.2 - 15.2<br>76.3 - 73.2<br>CA40185-DEC22<br>2022-12-16 |
|---------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------------------|-------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
| PAHs - Polycyclic Aromatic Hydrocarbons                                                                       |                         |       |                         |                         |                                                                  |                                                                                        |                                                                 |                                                                  |
| Acenaphthene                                                                                                  | 4.1                     | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Acenaphthylene                                                                                                | 1                       | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Anthracene                                                                                                    | 2.4                     | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Benz[a]anthracene                                                                                             | 1                       | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Benzo[a]pyrene                                                                                                | 0.01                    | µg/L  | <0.01                   | Multiple                | <0.01                                                            | <0.01                                                                                  | <0.01                                                           | <0.01                                                            |
| Benzo[b]fluoranthene                                                                                          | 0.1                     | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Benzo[ghi]perylene                                                                                            | 0.2                     | µg/L  | <0.2                    | Multiple                | <0.2                                                             | <0.2                                                                                   | <0.2                                                            | <0.2                                                             |
| Benzo[k]fluoranthene                                                                                          | 0.1                     | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Chloronaphthalene, 1-                                                                                         | NV                      | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Chloronaphthalene, 2-                                                                                         | NV                      | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Chrysene                                                                                                      | 0.1                     | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Dibenz[a,h]anthracene                                                                                         | 0.2                     | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Fluoranthene                                                                                                  | 0.41                    | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Fluorene                                                                                                      | 120                     | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Indeno[1,2,3-cd]pyrene                                                                                        | 0.2                     | µg/L  | <0.2                    | Multiple                | <0.2                                                             | <0.2                                                                                   | <0.2                                                            | <0.2                                                             |
| Methlynaphthalene, 2-(1-)                                                                                     | 3.2                     | µg/L  | <0.5                    | Multiple                | <0.5                                                             | <0.5                                                                                   | <0.5                                                            | <0.5                                                             |
| Methylnaphthalene, 1-                                                                                         | NV                      | µg/L  | <0.5                    | Multiple                | <0.5                                                             | <0.5                                                                                   | <0.5                                                            | <0.5                                                             |
| Methylnaphthalene, 2-                                                                                         | NV                      | µg/L  | <0.5                    | Multiple                | <0.5                                                             | <0.5                                                                                   | <0.5                                                            | <0.5                                                             |
| Naphthalene                                                                                                   | 11                      | µg/L  | <0.5                    | Multiple                | <0.5                                                             | <0.5                                                                                   | <0.5                                                            | <0.5                                                             |
| Perylene                                                                                                      | NV                      | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Phenanthrene                                                                                                  | 1                       | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |
| Pyrene                                                                                                        | 4.1                     | µg/L  | <0.1                    | Multiple                | <0.1                                                             | <0.1                                                                                   | <0.1                                                            | <0.1                                                             |

#### Notes:

Blanks indicate not analysed.

'NV ' : No Standard established

0.Reg.153/04 Table 2 means 0.Reg.153/04 Table 2 means: Table 2 Full Depth Generic Site Condition Standards for Ground Water for All Types of Property Uses. Coarse-textured soil. Per Ontario Ministry of the Environment, Conservation and Parks document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," March 2004, as amended. (0.Reg.153/04). #N/A

## 100 (shaded fill) Exceeds O.Reg.153/04 Table 2 100 (bolded) #N/A <100 (underlined)</td> Detection Limit Exceeds O.Reg.153/04 Table 2 <100 (italicized)</td> #N/A

## Table 3.3: Summary of Ground Water Quality ResultsPetroleum Hydrocarbons and BTEX1095 Kingston Road, Pickering

| Sample ID                                     |                         |       |                |                         | BH1         | DUP-1            | BH2         | BH3           |
|-----------------------------------------------|-------------------------|-------|----------------|-------------------------|-------------|------------------|-------------|---------------|
| Sample Note                                   |                         |       | Max.<br>Sample | Max. Conc.<br>Sample ID |             | Duplicate of BH1 |             |               |
| Screened Depth (m)                            | O.Reg.153/04<br>Table 2 | UNITS |                |                         | 10.7 - 13.7 | 10.7 - 13.7      | 9.1 - 12.2  | 12.2 - 15.2   |
| Screened Interval (mASL/mAAD)                 |                         |       | Conc.          |                         | 76.8 - 73.7 | 76.8 - 73.7      | 78.6 - 75.5 | 76.3 - 73.2   |
| Lab Job #                                     |                         |       |                |                         |             | CA40185-DEC22    |             | CA40185-DEC22 |
| Sampling Date                                 |                         |       |                |                         | 2022-12-16  | 2022-12-16       | 2022-12-16  | 2022-12-16    |
| BTEX - Benzene, Toluene, Ethylbenzene, Xylene |                         |       |                |                         |             |                  |             |               |
| Benzene                                       | 5                       | µg/L  | <0.5           | Multiple                | <0.5        | <0.5             | <0.5        | <0.5          |
| Ethylbenzene                                  | 2.4                     | µg/L  | <0.5           | Multiple                | <0.5        | <0.5             | <0.5        | <0.5          |
| Toluene                                       | 24                      | µg/L  | <0.5           | Multiple                | <0.5        | <0.5             | <0.5        | <0.5          |
| Xylene Mixture                                | 300                     | µg/L  | <0.5           | Multiple                | <0.5        | <0.5             | <0.5        | <0.5          |
| Xylene, m- & p-                               | NV                      | µg/L  | <0.5           | Multiple                | <0.5        | <0.5             | <0.5        | <0.5          |
| Xylene, o-                                    | NV                      | µg/L  | <0.5           | Multiple                | <0.5        | <0.5             | <0.5        | <0.5          |
| PHCs - Petroleum Hydrocarbons                 |                         |       |                |                         |             |                  |             |               |
| Petroleum Hydrocarbons F1                     | 750                     | µg/L  | <25            | Multiple                | <25         | <25              | <25         | <25           |
| Petroleum Hydrocarbons F1-BTEX                | 750                     | µg/L  | <25            | Multiple                | <25         | <25              | <25         | <25           |
| Petroleum Hydrocarbons F2                     | 150                     | µg/L  | <100           | Multiple                | <100        | <100             | <100        | <100          |
| Petroleum Hydrocarbons F3                     | 500                     | µg/L  | <200           | Multiple                | <200        | <200             | <200        | <200          |
| Petroleum Hydrocarbons F4                     | 500                     | µg/L  | <200           | Multiple                | <200        | <200             | <200        | <200          |

#### Notes:

Blanks indicate not analysed.

'NV ' : No Standard established

0.Reg.153/04 Table 2 means 0.Reg.153/04 Table 2 means: Table 2 Full Depth Generic Site Condition Standards for Ground Water for All Types of Property Uses. Coarse-textured soil. Per Ontario Ministry of the Environment, Conservation and Parks document "Stoil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, as amended. (0.Reg.153/04).

#N/A

| 100 (shaded fill) | Exceeds 0.Reg.153/04 Table 2                 |
|-------------------|----------------------------------------------|
| 100 (bolded)      | #N/A                                         |
| <100 (underlined) | Detection Limit Exceeds O.Reg.153/04 Table 2 |
| <100 (italicized) | #N/A                                         |

## Table 3.4: Summary of Ground Water Quality ResultsVolatile Organic Compounds and Trihalomethanes1095 Kingston Road, Pickering

| Sample ID                         |              |      |       |                 |            | BH1           | DUP-1            | BH2         | BH3           |
|-----------------------------------|--------------|------|-------|-----------------|------------|---------------|------------------|-------------|---------------|
| Sample Note                       |              |      |       |                 |            |               | Duplicate of BH1 |             |               |
| Screened Depth (m)                | 0.Reg.153/04 |      |       | Max.            | Max. Conc. | 10.7 - 13.7   | 10.7 - 13.7      | 9.1 - 12.2  | 12.2 - 15.2   |
| Screened Interval (mASL/mAAD)     | Table 2      | #N/A | UNITS | Sample<br>Conc. | Sample ID  | 76.8 - 73.7   | 76.8 - 73.7      | 78.6 - 75.5 | 76.3 - 73.2   |
| Lab Job #                         |              |      |       | Conc.           |            | CA40185-DEC22 | CA40185-DEC22    |             | CA40185-DEC22 |
| Sampling Date                     |              |      |       |                 |            | 2022-12-16    | 2022-12-16       | 2022-12-16  | 2022-12-16    |
| VOCs - Volatile Organic Compounds |              |      |       |                 |            |               |                  |             |               |
| Acetone                           | 2700         |      | µg/L  | <30             | Multiple   | <30           | <30              | <30         | <30           |
| Bromodichloromethane              | 16           |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Bromoform                         | 25           |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Bromomethane                      | 0.89         |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Carbon Tetrachloride              | 0.79         |      | µg/L  | <0.2            | Multiple   | <0.2          | <0.2             | <0.2        | <0.2          |
| Chlorobenzene                     | 30           |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Chloroform                        | 2.4          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Dibromochloromethane              | 25           |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Ethylene dibromide                | 0.2          |      | µg/L  | <0.2            | Multiple   | <0.2          | <0.2             | <0.2        | <0.2          |
| Dichlorobenzene, 1,2-             | 3            |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Dichlorobenzene, 1,3-             | 59           |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Dichlorobenzene, 1,4-             | 1            |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Dichlorodifluoromethane           | 590          |      | µg/L  | <2              | Multiple   | <2            | <2               | <2          | <2            |
| Dichloroethane, 1,1-              | 5            |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Dichloroethane, 1,2-              | 1.6          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Dichloroethylene, 1,1-            | 1.6          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Dichloroethylene, 1,2-cis-        | 1.6          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Dichloroethylene, 1,2-trans-      | 1.6          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Dichloropropane, 1,2-             | 5            |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Hexane (n)                        | 51           |      | µg/L  | <1              | Multiple   | <1            | <1               | <1          | <1            |
| Methyl Ethyl Ketone               | 1800         |      | µg/L  | <20             | Multiple   | <20           | <20              | <20         | <20           |
| Methyl Isobutyl Ketone            | 640          |      | µg/L  | <20             | Multiple   | <20           | <20              | <20         | <20           |
| Methyl tert-Butyl Ether (MTBE)    | 15           |      | µg/L  | <2              | Multiple   | <2            | <2               | <2          | <2            |
| Methylene Chloride                | NV           |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Styrene                           | 5.4          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Tetrachloroethane, 1,1,1,2-       | 1.1          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Tetrachloroethane, 1,1,2,2-       | 1            |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Tetrachloroethylene               | 1.6          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Trichloroethane, 1,1,1-           | 200          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Trichloroethane, 1,1,2-           | 4.7          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Trichloroethylene                 | 1.6          |      | µg/L  | <0.5            | Multiple   | <0.5          | <0.5             | <0.5        | <0.5          |
| Trichlorofluoromethane            | 150          |      | µg/L  | <5              | Multiple   | <5            | <5               | <5          | <5            |
| Vinyl Chloride                    | 0.5          |      | µg/L  | <0.2            | Multiple   | <0.2          | <0.2             | <0.2        | <0.2          |

#### Notes:

Blanks indicate not analysed.

'NV ' : No Standard established

0.Reg.153/04 Table 2 means 0.Reg.153/04 Table 2 means: Table 2 Full Depth Generic Site Condition Standards for Ground Water for All Types of Property Uses. Coarse-textured soil. Per Ontario Ministry of the Environment, Conservation and Parks document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, as amended. (0.Reg.153/04).

#N/A

| 100 (shaded fill) | Exceeds 0.Reg.153/04 Table 2                 |  |
|-------------------|----------------------------------------------|--|
| 100 (bolded)      | #N/A                                         |  |
| <100 (underlined) | Detection Limit Exceeds O.Reg.153/04 Table 2 |  |
| <100 (italicized) | #N/A                                         |  |

## **APPENDIX A**





File No. 22-279 (Rev 1.0) January 16, 2024

### Phase One Environmental Conceptual Site Model

### 1095 Kingston Road, Pickering, Ontario

| Phase One ESA including Figures of the Phase One Study Area, which identify the following: | e Phase One ESA Information:                                                                                                                                                                                                                                                            |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Existing buildings and structures                                                          | Existing building and structures are presented in Figure 2.                                                                                                                                                                                                                             |  |  |  |
| Water bodies located in whole or in part on the Phase<br>One Study Area                    | All water bodies on the Phase One Property and Phase One Study Area are shown on Figure 3.                                                                                                                                                                                              |  |  |  |
| Areas of Natural Significance located in whole or in part on the Phase One Study Area      | None of the following ANSIs were located on the Property and within the Study Area.                                                                                                                                                                                                     |  |  |  |
|                                                                                            | List of ANSIs reviewed:                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                            | <ul> <li>An area reserved or set apart as a provincial park or<br/>conservation reserve under the Provincial Parks and<br/>Conservation Reserves Act, 2006.</li> </ul>                                                                                                                  |  |  |  |
|                                                                                            | <ul> <li>An area of natural and scientific interest (life science or<br/>earth science) identified by the Ministry of Natural<br/>Resources as having provincial significance.</li> </ul>                                                                                               |  |  |  |
|                                                                                            | <ul> <li>A wetland identified by the Ministry of Natural Resources<br/>as having provincial significance.</li> </ul>                                                                                                                                                                    |  |  |  |
|                                                                                            | <ul> <li>An area designated by a municipality in its official plan as<br/>environmentally significant, however expressed, including<br/>designations of areas as environmentally sensitive, as<br/>being of environmental concern and as being ecologically<br/>significant.</li> </ul> |  |  |  |
|                                                                                            | <ul> <li>An area designated as an escarpment natural area or an<br/>escarpment protection area by the Niagara Escarpment<br/>Plan under the Niagara Escarpment Planning and<br/>Development Act.</li> </ul>                                                                             |  |  |  |
|                                                                                            | <ul> <li>An area identified by the Ministry of Natural Resources as<br/>significant habitat of a threatened or endangered species.</li> </ul>                                                                                                                                           |  |  |  |
|                                                                                            | <ul> <li>An area which is habitat of a species that is classified<br/>under section 7 of the Endangered Species Act, 2007 as a<br/>threatened or endangered species.</li> </ul>                                                                                                         |  |  |  |
|                                                                                            | <ul> <li>Property within an area designated as a natural core area<br/>or natural linkage area within the area to which the Oak<br/>Ridges Moraine Conservation Plan under the Oak Ridges<br/>Moraine Conservation Act, 2001 applies.</li> </ul>                                        |  |  |  |



|                                                                                                                                    | <ul> <li>An area set apart as a wilderness area under<br/>the Wilderness Areas Act.</li> </ul>                                                                                                                                                                                                                                                                                                     |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Roads (including names) within the Phase One Study<br>Area                                                                         | All roads within the Phase One Study Area are shown on Figure 3.                                                                                                                                                                                                                                                                                                                                   |  |  |
| Use of properties adjacent to the Phase One Property                                                                               | The land use of properties adjacent to the Phase One Property is shown on Figure 3.                                                                                                                                                                                                                                                                                                                |  |  |
| Location of drinking water wells on the Phase One Property                                                                         | No drinking water wells were present on the Phase One Property.                                                                                                                                                                                                                                                                                                                                    |  |  |
| Areas where any PCA has occurred, and locations of tanks in the Phase One Study Area                                               | The location of PCAs and tanks, if any, is shown on Figure 4.                                                                                                                                                                                                                                                                                                                                      |  |  |
| APECs on the Phase One Property                                                                                                    | The location of APECs on the Phase One Property is shown on Figure 5.                                                                                                                                                                                                                                                                                                                              |  |  |
| Narrative Description and Assessments                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Any areas where Potentially Contaminating Activity<br>(PCAs) on, or potentially affecting, the Phase One<br>Property have occurred | <ul> <li><u>On-site PCAs Associated with APEC 1:</u> <ul> <li>#30 – Importation of Fill Material of Unknown Quality</li> </ul> </li> <li><u>On-site PCAs Associated with APEC 2:</u> <ul> <li>Other 1 – De-icing Activities</li> </ul> </li> </ul>                                                                                                                                                 |  |  |
| Any Contaminants of Potential Concerns (CoPCs)                                                                                     | <ul> <li><u>CoPCs Associated with APEC 1:</u></li> <li>Metals, As, Sb, Se, CN-, Cr(VI), Hg, PAHs, BTEX, PHCs and VOCs in soil</li> <li>B-HWS in soil</li> <li><u>CoPCs Associated with APEC 2:</u></li> <li>EC and SAR in soil</li> </ul>                                                                                                                                                          |  |  |
| The potential of underground utilities (if any present) to affect contaminant distribution and transport                           | Buried hydro, gas, communication, water and electrical all<br>run through the Property. Based on these observations, there<br>is the potential for underground utilities to affect the<br>distribution and transportation of contaminants underneath<br>the Property.                                                                                                                              |  |  |
| Available regional or site specific geological and hydrogeological information                                                     | <ul> <li><u>Topography:</u> <ul> <li>The approximate elevation of the Property is 90 m above sea level (masl) and is relatively flat, with a slight slope towards the south.</li> </ul> </li> <li><u>Hydrology:</u> <ul> <li>The nearest surface water body is the Dunbarton Creek located approximately 93 m to the west (channelized section) and 180 m (open section) to</li> </ul> </li> </ul> |  |  |



|                                                                                                                         | <ul> <li>the south of the Property. Frenchman's Bay is located approximately 300 m southwest of the Property.</li> <li>Surface water flow is expected to flow to the municipal catch basins located on the Property or the adjacent roadways. Groundwater is expected to flow locally south towards Dunbarton Creek, then southeast towards Frenchman's Bay.</li> </ul> |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                         | Overburden:                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                         | <ul> <li>Fine-textured glaciolacustrine deposits comprised<br/>of silt and clay, and minor sand and gravel.</li> </ul>                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                         | Bedrock:                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                         | <ul> <li>Collingwood Formation comprised of shale,<br/>limestone, dolostone, and siltstone.</li> </ul>                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                         | • Based on MECP well records in the Study Area, bedrock was encountered at a depth of 15.24 mbgs.                                                                                                                                                                                                                                                                       |  |  |
| Any uncertainty or absence of information obtained in<br>the Phase One ESA that could affect the validity of the<br>CSM | No uncertainty or absence of information obtained in the<br>Phase One ESA is identified to have an affect on the validity<br>of the CSM.                                                                                                                                                                                                                                |  |  |

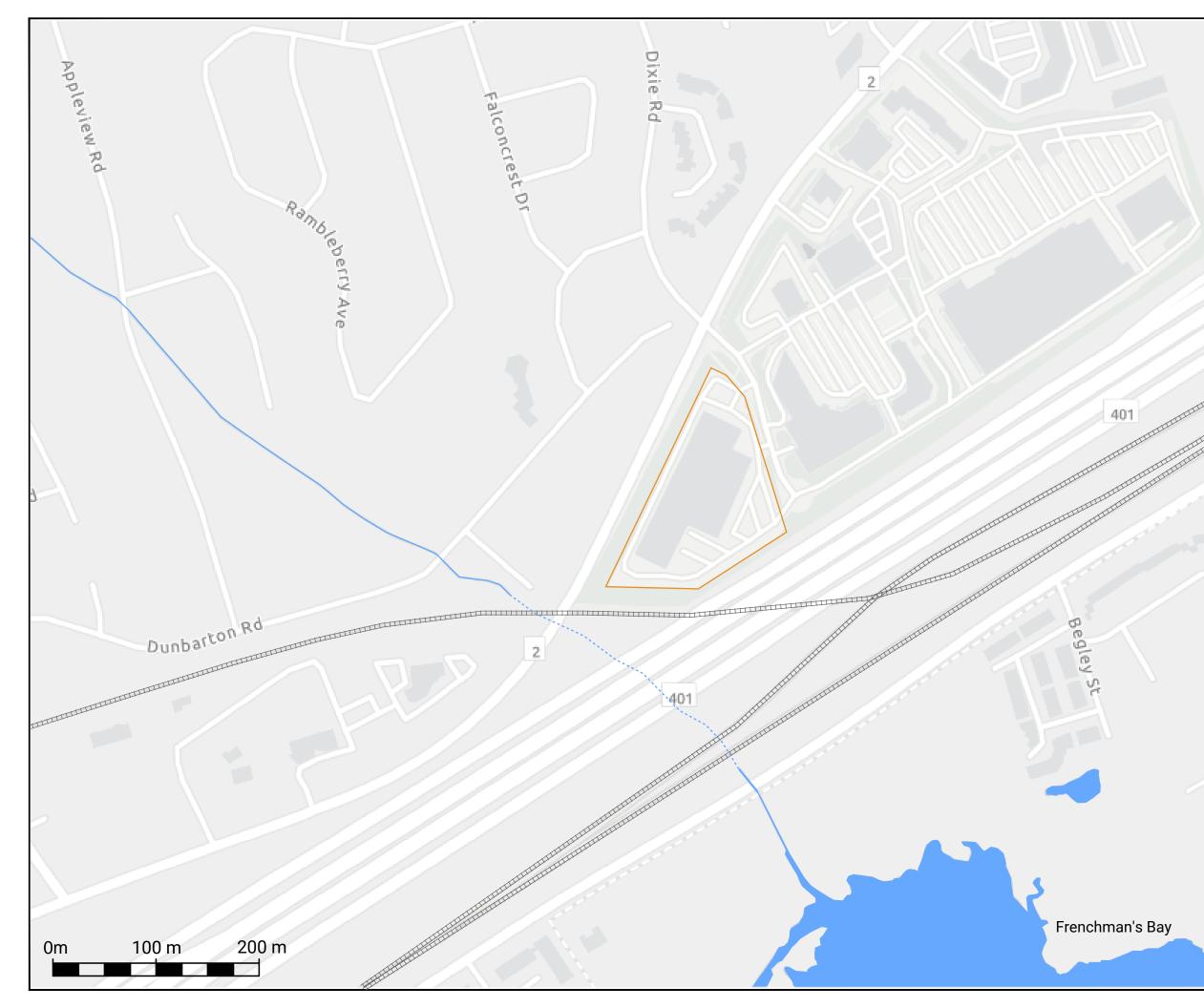

Figure 1 – Site Location Plan

Figure 2 – Phase One Property

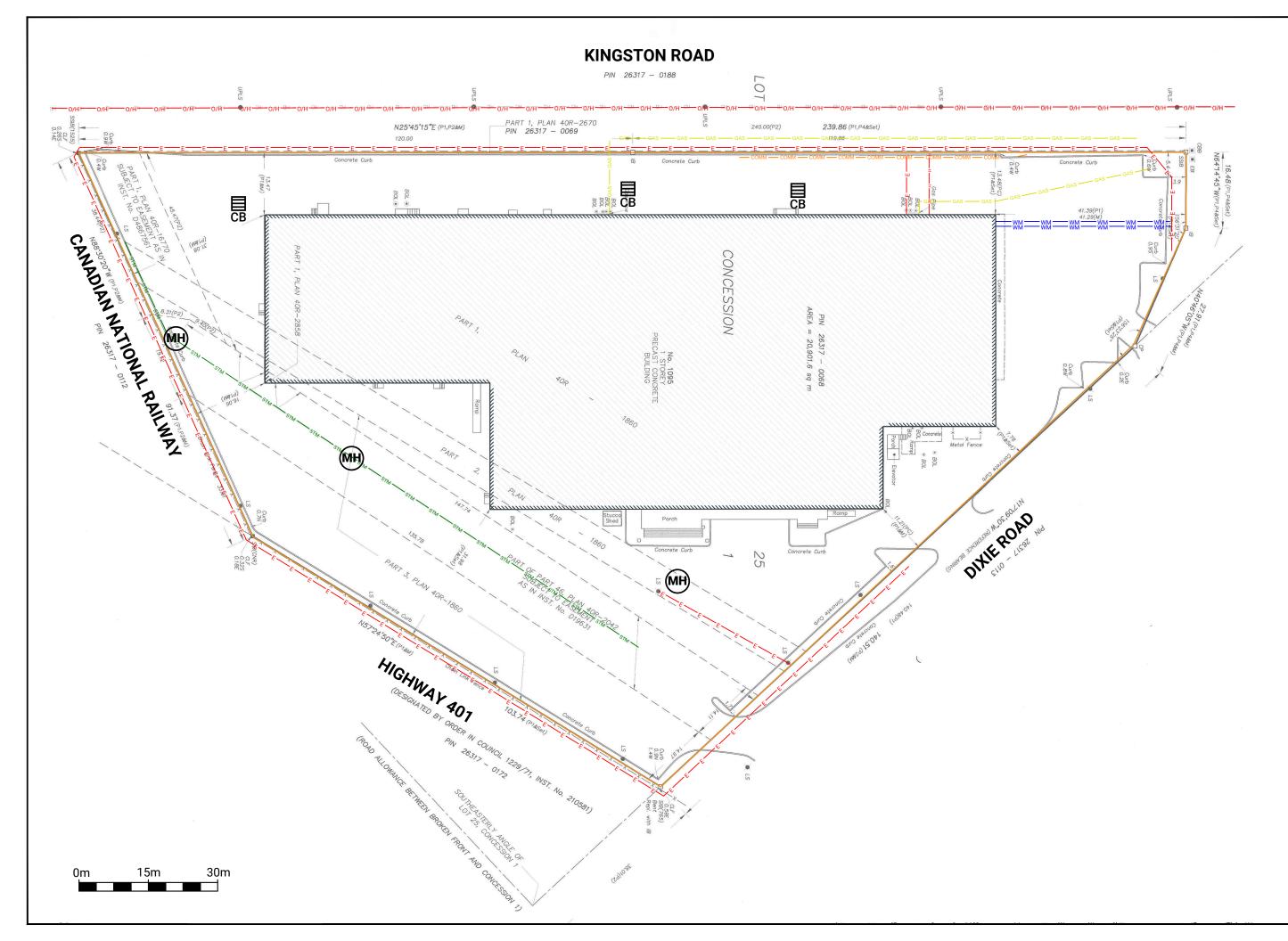

Figure 3 – Phase One Study Area

Figure 4 – PCA Locations

Figure 5 – APEC Locations



|              | Contraction                                                                         |
|--------------|-------------------------------------------------------------------------------------|
|              | Note                                                                                |
| St Martins D | Reference<br>ArcGIS Map 2022<br>Project<br>1095 KINGSTON ROAD<br>PICKERING, ONTARIO |
|              | Figure Title SITE LOCATION North Date JANUARY 2024 Scale                            |
| 5            | AS INDICATED<br>Job No<br>22-279<br>Figure No<br>FIGURE 1                           |



|                                          | ORIVE, TORONTO, ONT., M4H 1G3<br>www.groundedeng.ca                                                                                                              |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                          | LEGEND<br>ROPERTY BOUNDARY<br>XISTING BUILDING STRUCTURE                                                                                                         |  |  |
| — н —<br>— 0/н —<br>— сомм —<br>— сомм — | <ul> <li>GAS</li> <li>ELECTRICAL</li> <li>BURIED HYDRO</li> <li>OVERHEAD HYDRO</li> <li>WATER</li> <li>COMMUNICATION</li> <li>SANITARY</li> <li>STORM</li> </ul> |  |  |
|                                          | MANHOLE<br>CATCH BASIN                                                                                                                                           |  |  |

### Note

Utilities shown on this figure are shown for informational purposes only for the Phase One ESA, as outlined by O.Reg. 153/04. This is not an official locate and the information presented should not be relied upon.

#### Reference

Ertl Surveyors., "Plan of Survey of Part of Lot 25 Concession 1, Geographic Township of Pickering, City of Pickering, Regional Municipality of Durham", Job No. 2108245, dated June 23, 2020.

Project

### 1095 KINGSTON ROAD PICKERING, ONTARIO

Figure Title

### PHASE ONE PROPERTY

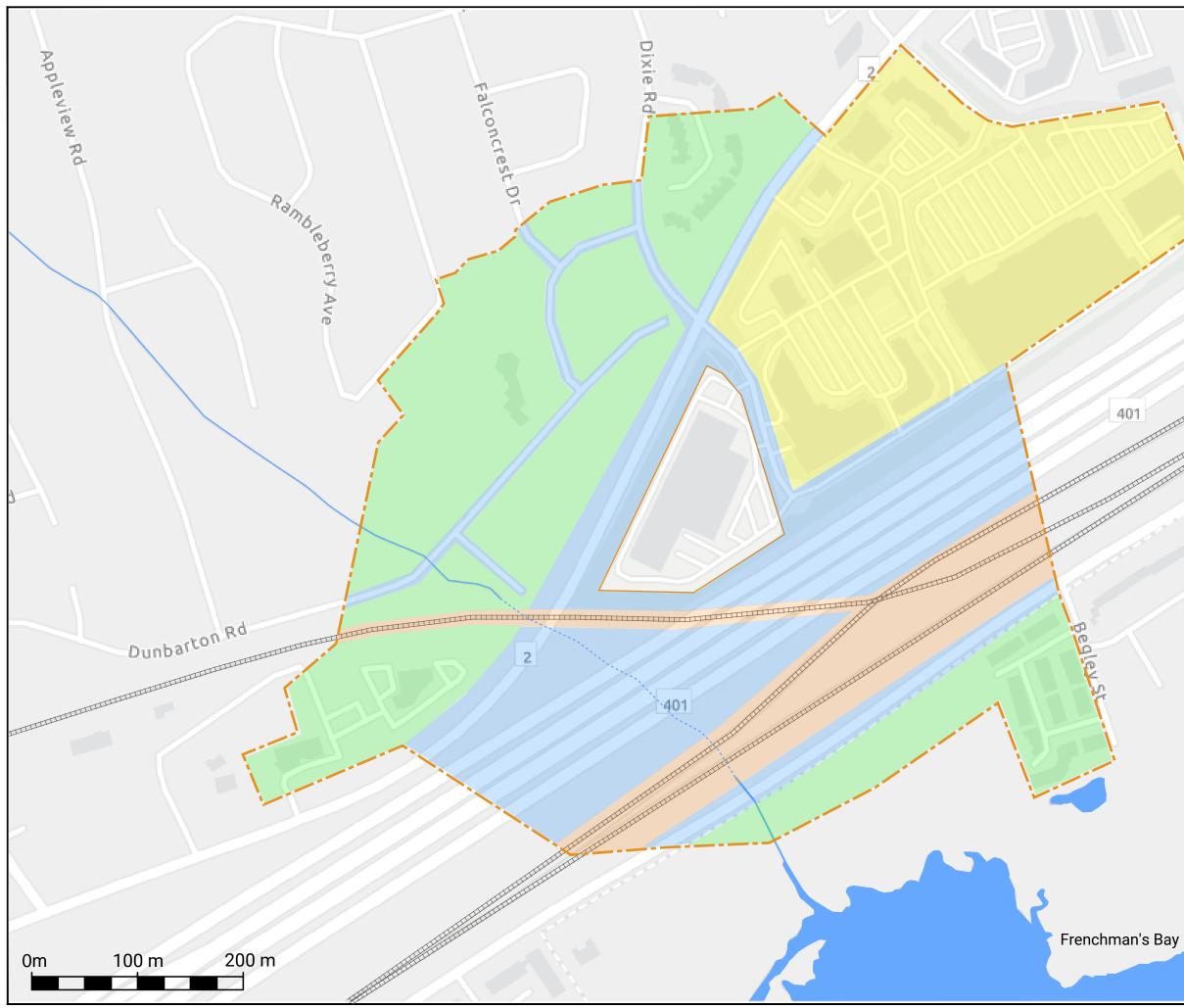
North



Date

JANUARY 2024

Scale


AS INDICATED

Job No

22-279

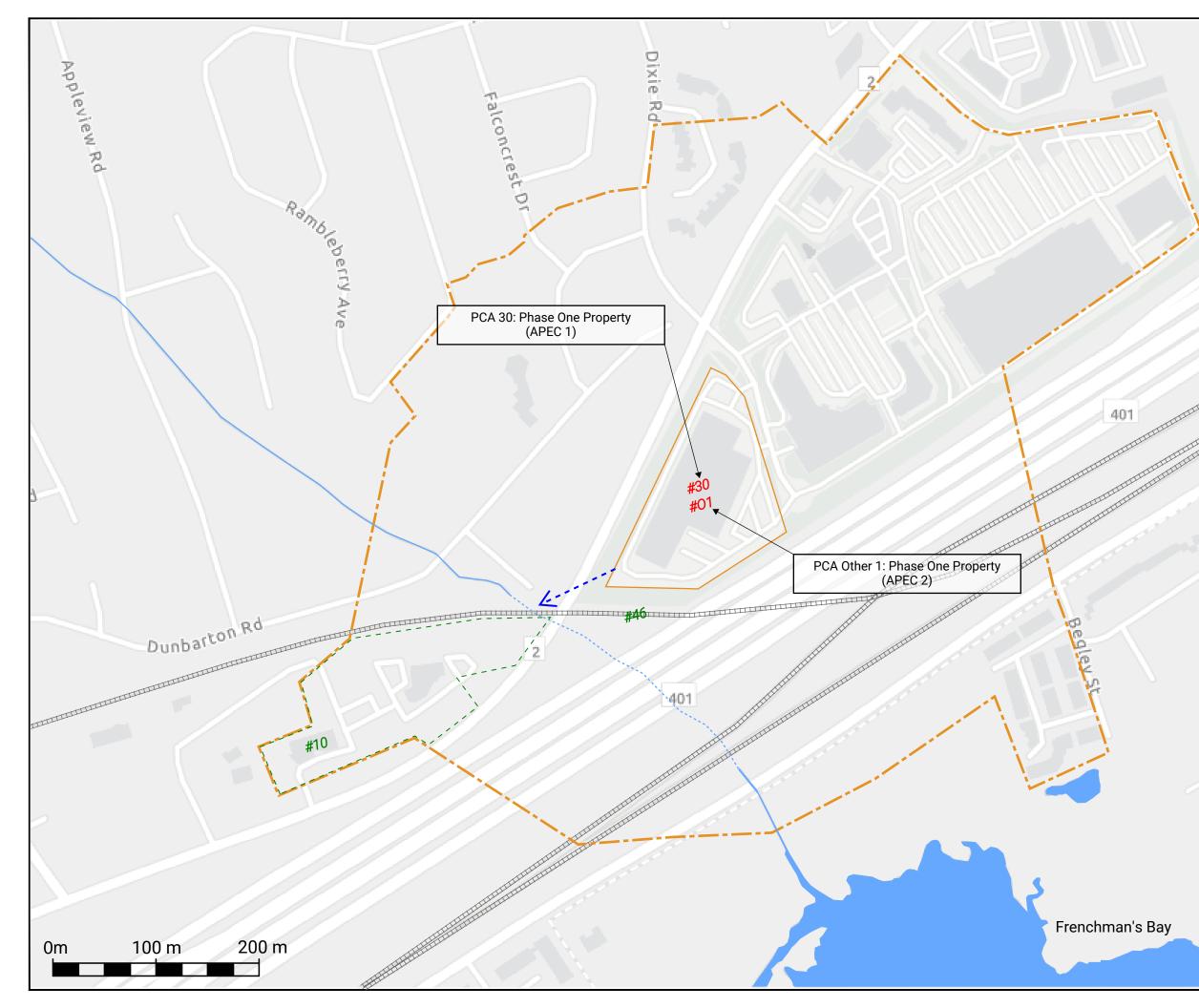
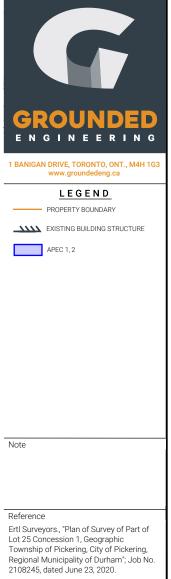

Figure No

FIGURE 2




|                | GROUNDED<br>E N G I N E E R I N G                                                                                                                                                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3<br>www.groundedeng.ca                                                                                                                                                                                             |
| and the second | LEGEND         APPROXIMATE PROPERTY BOUNDARY         STUDY AREA (250 m RADIUS)         RAILWAY TRACKS         REGULATED WATERBOLDIES         COMMERCIAL LAND USE         INDUSTRIAL LAND USE         RESIDENTIAL, PARKLAND, AND<br>INSTITUTIONAL LAND USE |
|                | Note                                                                                                                                                                                                                                                      |
|                | Reference                                                                                                                                                                                                                                                 |
|                | ArcGIS Map 2022                                                                                                                                                                                                                                           |
|                | Project                                                                                                                                                                                                                                                   |
|                | 1095 KINGSTON ROAD<br>PICKERING, ONTARIO                                                                                                                                                                                                                  |
|                | Figure Title<br>PHASE ONE STUDY<br>AREA                                                                                                                                                                                                                   |
|                | North                                                                                                                                                                                                                                                     |
|                | Date<br>JANUARY 2024                                                                                                                                                                                                                                      |
| 1              | Scale AS INDICATED                                                                                                                                                                                                                                        |
|                | Job No 22-279                                                                                                                                                                                                                                             |
| 5              | Figure No<br>FIGURE 3                                                                                                                                                                                                                                     |

St Martins Dr



|               | <b>GROUNDED</b><br>E N G I N E E R I N G<br>1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3<br>www.groundedeng.ca                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|               | LEGEND         APPROXIMATE PROPERTY BOUNDARY         STUDY AREA (250 m RADIUS)         Railway TRACKS         REGULATED WATERBOLDIES         < |
|               | Note<br>GREEN - PCA NOT CAUSING APEC<br>RED - PCA CAUSING APEC                                                                                 |
| St L          | Reference<br>ArcGIS Map 2022                                                                                                                   |
| St Martins Dr | Project<br>1095 KINGSTON ROAD<br>PICKERING, ONTARIO                                                                                            |
|               | Figure Title PCA LOCATIONS North                                                                                                               |
|               | PROJECT<br>Date<br>JANUARY 2024                                                                                                                |
| -             | Scale AS INDICATED                                                                                                                             |
| 2             | 22-279<br>Figure No<br>FIGURE 4                                                                                                                |





Project

### 1095 KINGSTON ROAD PICKERING, ONTARIO

Figure Title

### APEC LOCATIONS

North



Date

JANUARY 2024

Scale

AS INDICATED

22-279

Figure No

Job No

FIGURE 5

## **APPENDIX B**





### Appendix B: Sampling and Analysis Plan

| Areas of<br>Potential<br>Environmental<br>Concern<br>(APECs) &<br>Location | Potentially<br>Contaminating<br>Activities<br>(PCAs)              | Contaminants of<br>Potential Concern<br>(CoPCs)                                      | Media<br>Potentially<br>Impacted<br>(Groundwater,<br>soil and/or<br>sediment) | Borehole or<br>Monitoring<br>Well<br>Associated | Rationale                                                                                                                                                                                  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APEC 1<br>(Entire<br>Property)                                             | #30 -<br>Importation of<br>Fill Material of<br>Unknown<br>Quality | Metals<br>As, Sb, Se<br>B-HWS<br>CN-<br>Hg<br>Cr(VI)<br>PAHs<br>PHCs<br>VOCs<br>BTEX | Soil                                                                          | BH1 – 3                                         | <ul> <li>To assess if the soil within the APEC was impacted due to historical use of fill of unknown quality.</li> <li>To determine depth to groundwater and direction of flow.</li> </ul> |
| APEC 2<br>(Entire<br>Property)                                             | Other 1 - De-<br>icing Activities                                 | EC<br>SAR                                                                            | Soil                                                                          | BH1 – 3                                         | • To assess if the soil within the APEC was impacted due to de-<br>icing activities.                                                                                                       |

## **APPENDIX C**





### STANDARD OPERATING PROCEDURE FIELD SCREENING

### 1 Introduction

Field screening using the RKI Eagle 2 Multi Gas Detector provides real time vapour measurements in soil samples. Before use, the gastech must be calibrated (refer to Gastech Calibration Manual) and noted in the provided logbook. Soil headspace vapour screening measures relative concentrations of volatile organic compounds in the headspaces of soil sample containers as an indicator of volatile contaminants in the soil sample. After the headspace screening is complete, the relative concentrations are evaluated for indications of possible impacts and to provide guidance on which soil samples are to be submitted to an analytical laboratory.

## 2 Equipment Required

- Nitrile gloves
- Gastech/Eagle 2
- Slider bags
- Sampling plan from Project Manager
- Field notebook/field forms
- Garbage bags
- First Aid Kit

### **3** Procedure

### 3.1 Before Going to Site

- 1. Review locations and sampling depths
- 2. Carry out site specific health and safety plan
- 3. Coordinate site access with PM/client



### 3.2 On-Site Activities

Generally, the readings must be collected as quickly as feasible and directly from the samples. Field screening are used to decide which samples will be submitted for analysis, but all potential samples must be immediately chemically preserved.

- 1. Calibrate the field screening equipment and record details in logbook.
- 2. Put on clean disposable gloves and change between every sample
- 3. Assemble the appropriate equipment required prior to the soil sample being retrieved
- 4. Retrieve soil samples from the borehole or test pit or stockpile
- 5. Disturb 2 mm to 4 mm of the soil sample using a clean spatula or other suitable tool and immediately record vapour readings
- 6. Place remaining soil sampling in a slider bag/jar and insert tip in small opening and record the vapour reading
- 7. Samples selected for laboratory analysis should be based on the highest vapour readings for the sample interval.
- 8. Reset the field screening equipment between each sample reading.



### STANDARD OPERATING PROCEDURE SOIL SAMPLING

### 1 Introduction

Subsurface investigations typically involve the sampling of subsurface soils at various depths and locations of interest. There are several methods which can be utilized to obtain a soil sample. Depending on the nature of the investigations, several methods may be implemented. This SOP will focus on the techniques and process of collecting samples from boreholes, test pits, hand augers, and stockpiles.

During sampling, field screening of soil samples may be performed to better indicate the presence of potential contaminants of concern (i.e. VOCs and PHCs). Refer to the SOP Field Screening for the complete process.

## 2 Equipment Required

- Nitrile gloves
- Alconox
- RKI Eagle2 Gastech
- Slider bags
- Lab sample bottles/jars
- Terracores or coring device (sampler)
- Sampling plan from Project Manager
- Ice and cooler
- Field notebook/field forms
- Garbage bags
- First Aid Kit

### **3** Procedure

### 3.1 Before Going to Site

- 1. Review sampling locations and sampling depths
- 2. Carry out site specific health and safety plan
- 3. Coordinate site access with PM/client

### 3.2 On-Site Activities

When soil sampling, special care must be taken NOT to contaminate samples through cross contamination. A clean pair of new, non-powdered, disposable gloves are to be worn each time a different sample is handled or collected. Gravel, concrete, asphalt, and granular material present at surface should be removed prior to sampling.

- 1. Put on clean disposable gloves and ensure to change between every sample.
- 2. Assemble the appropriate lab supplied jars/vials.
- 3. Label the appropriate lab supplied jars/vials with the Location ID, Sample ID, Date, PM, and analysis to be completed.
- 4. Collect the samples to be analyzed.
  - a. <u>Borehole</u> Standard split spoon is stainless steel, 2" in diameter and 18"–24" in length. Used for surface, shallow, and deep soil sampling.
    - i. Split spoon must be decontaminated prior to sample collection, usually using a soapy mixture supplied by the drillers.
    - ii. Split spoon is driven to sampling depth to retrieve soil sample.
    - iii. Gravel, concrete, asphalt, and granular material present at surface should be removed prior to sampling.
    - iv. Top several inches of soil in the spoon may be discarded due to slight cave in the borehole.
    - v. Sample directly from split spoon using a coring device and fill vials with appropriate weight for VOCs/PHCs parameters.
    - vi. Use appropriate lab supplied jars to preserve sample for all other parameters.
    - vii. When collecting a field duplicate sample be sure split the sample evenly between parent and duplicate sample bottles/jars.
  - <u>Test Pit</u> Excavator or backhoe used to excavate/sample in-situ soil. Only sample from inside the test pit if safe to enter (Refer to Health & Safety Sheet), otherwise collect sample from excavator bucket. Used for surface and shallow (3 m 4 m) soil sampling at specific depths.
    - i. The bucket must be decontaminated prior to sample collection.
    - ii. Use the excavation sampling field form to note:
      - a. General location and orientation of the test pit
      - b. The size of the excavation (length, width, depth below ground surface)
      - c. The stability of the excavation walls (e.g. stable, collapsing, sloughing)
      - d. An accurate description of the nature, depth and thickness of each stratigraphic unit and inferred contamination
      - e. The nature, depth, thickness and extent of any staining, odours and debris
      - f. The depth of water seepage and depth at which sloughing occurs

- g. The depth and nature of fil material and native soils
- h. The depth and type f bedrock where applicable
- iii. Sample directly from walls/base of the test pit IF safe to enter. Otherwise sample directly from the bucket when safe to do so. If sampling from the bucket, use a trowel to expose and ensure samples are collected from central portion of the excavated soils.
- iv. Sample VOCs/PHCs immediately using a coring device and fill vials with appropriate weight.
- v. Use appropriate lab supplied jars for all contaminants of concern.
- vi. When collecting a field duplicate sample be sure split the sample evenly between parent and duplicate sample bottles/jars.
- c. <u>Hand Auger</u> Steel auger used to manually dig by simultaneously pushing and turning using the attached handle. Used for surface and shallow (1 m 2 m) soil sampling.
  - i. The auger must be decontaminated prior to each sample collection.
  - ii. Top several inches of soil in the auger may be discarded due to slight cave in the hole.
  - iii. Sample directly from the auger while ensuring no smearing or caving introduced at desired depth.
  - iv. Sample VOCs/PHCs immediately using a coring device and fill vials with appropriate weight.
  - v. Use appropriate lab supplied jars for all contaminants of concern. When collecting a field duplicate sample be sure split the sample evenly between parent and duplicate sample bottles/jars.
- d. <u>Stockpile</u> Excavator, backhoe or shovel used to sample at various locations and depths depending on size of stockpile. Refer to stockpile sampling frequency guideline.
  - i. Sampling locations must be chosen to ensure uniformly distributed and representative sampling collection throughout the stockpile.
  - ii. Samples must not be collected from the surface of a stockpile.
  - iii. Sample directly from the bucket or shovel while ensuring no smearing or caving introduced at desired depth/location.
  - iv. Sample VOCs/PHCs immediately using a coring device and fill vials with appropriate weight.
  - v. Use appropriate lab supplied jars for all contaminants of concern. When collecting a field duplicate sample be sure split the sample evenly between parent and duplicate sample bottles/jars.

## **4** Reference

Ontario Ministry of the Environment, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.* 



## STANDARD OPERATING PROCEDURE WELL DEVELOPMENT

## **1** Introduction

Monitoring well development is necessary to ensure that complete hydraulic connection is made – and maintained – between the well and the aquifer material surrounding the well screen and filter pack. The appropriate development method should be selected for each project based on the circumstances, lithology, objectives, and requirements of that project. If drilling muds are used during well installation, well development should occur within 24 hours following well installation so that the drilling mud does not settle in the well screen. Generally, a phased process is used to develop wells, starting with a gentle bailing phase to remove sand, followed by a surging phase, and then a pumping phase after the well begins to clear up.

## 2 Equipment Required

- Interface meter or water level meter
- Waterra
- Foot valves
- Surge blocks
- Waterra cutters
- Well keys/Ratchet set/Allen keys
- Deionized or distilled water/Alconox (for cleaning probe in between wells)

- Field notebook/field forms
- Nitrile gloves
- Graduated bucket
- Garbage bags
- Batteries (9 V)
- First Aid Kit
- Purge Drums (as necessary for contaminated sites)

## **3** Procedure

### 3.1 Before Going to Site

- 1. Review monitoring well locations and BH logs to determine well screen depths and screened strata
- 2. Carry out site specific health and safety plan
- 3. Coordinate site access with PM/client



## 3.2 On-Site Activities

When developing a well, be aware of the drilling method used (e.g., drilling mud) and the local soil conditions (potential recharge rate) as this can dramatically influence the well development methods.

- 1. Remove well lock or well cap casing, and well pipe cap (e.g., J-plug).
- 2. Using notebook/field forms, note project name and number, well ID, date, time, and weather.
- 3. Record water level, well depth, and well stick-up (refer to water level SOP).
- 4. Calculate casing volume of well (refer to casing volume SOP).
- 5. Use the calculated casing volume to determine total volume of water to be purged:
  - For initial (new) well development, when **FLUID** is used, purge ten (10) casing volumes, or purge until the well is dry.
  - For initial (new) well development, when **NO FLUID**, purge five (5) casing volumes, or purge until the well is dry.
  - For well development of **a previous consultants' well**, purge five (5) casing volumes, or purge until the well is dry.
  - For **subsequent well development**, purge three (3) casing volumes for redevelopment, or purge until the well is dry.
- 6. Attach foot valve to the bottom end of the waterra. Slowly lower the bottom of the waterra into the well. Once the foot valve touches the bottom, leave extra waterra above ground so you can pump water from the well.
- 7. If surging the monitoring well is required, complete the following:
  - Remove the waterra from the well. Remove foot valve from bottom of the waterra.
  - Slide a surge block onto the bottom of the waterra. Reconnect the foot valve to the waterra. Fasten the surge block to the foot valve.
  - Lower the waterra into the monitoring well until well screen is reached. You should be able to feel the well screen with the surge block attached.
  - Lift the waterra up and down along the screen for 5 to10 minutes.
- 8. Remove the pre-determined number of casing volumes from the monitoring well or until the well is dry (see *step 5*).
  - If well goes dry during development: remove waterra from well, drain remaining fluid in waterra, and reinstall waterra in the well.
- 9. Record field observations regarding the purge water. (i.e., total volume purged, clarity, appearance, odour)
- 10. Discard purge water into drums if contamination of the property is known or suspected (discuss with PM). Otherwise, dispose of water at least 5 metres away from the well in a best management approach and as noted in the field package.
- 11. See Groundwater Stabilization SOP before collecting groundwater samples from wells.



## STANDARD OPERATING PROCEDURE MEASURING A WATER LEVEL

## 1 Introduction

An electrical sounder (interface meter/water level meter) is one of several different methods used to determine the depth of water in a well. It consists of a weighted probe suspended on stranded insulated wire with marked tape/line that is fitted on a reel with a grounding cable attached. Current that is supplied by a 9 V battery flows through the circuit when the end of the probe contacts a water surface, activating a loud buzzer and a light. The depth of the water level can then be determined by taking a reading from the tape at the top of the well. The use of an interface meter or water level meter is widely considered to be the most practical method used for measuring well water levels in the field.

## 2 Equipment Required

- Interface meter <u>or</u> water level meter (Solinst Operating instructions attached)
  - Interface meter (IM) detects both water & free product
  - Water level meter (WLM) detects water only
- Deionized or distilled water/Alconox (for cleaning probe between wells)
- Batteries (9V)
- Nitrile gloves
- Field notebook/field forms
- Well keys/Ratchet set/Allen keys
- Wire coat hanger or bucket handle (for pulling waterra from well casing)
- Garbage bags
- First Aid Kit

## **3** Procedure

### 3.1 Before Going to Site

- 1. Review monitoring well locations and BH logs to determine well screen depths and screened strata
- 2. Carry out site specific health and safety plan
- 3. Coordinate site access with PM/client



## 3.2 On-Site Activities

When measuring a water level/well depth, be certain to establish a measuring reference point (typically top of well casing or top of pipe). Document the distance between ground surface and the measuring point (aka stick-up). All water level measurements should be conducted before removing/adding any water in the well or pulling waterra from the well.

- 1. Remove well lock or well cap casing, and well pipe cap (e.g., J-plug)
- 2. Using notebook/field forms, note project name and number, well ID, date, time, and weather
- 3. Test probe by activating the test (ON/OFF) switch
  - a. If loud buzzer/light is not activated during the test, replace the 9V battery in the WLM/IM
- 4. Measure the stick-up/depth of the measuring point
- 5. Attach grounding cable clamp to well flushmount/monument (needs to be conductive material)
- 6. Take a water level reading from the measuring point by slowly lowering probe into the well until contact with the water surface is indicated. Repeat measurement one (1) minute later to ensure initial reading is static
  - a. When using IM, also measure the depth/thickness of any free product encountered, which includes both light (floating) non-aqueous phase liquids (LNAPL), and dense (sinking) non-aqueous phase liquids (DNAPL). If free product is encountered, repeat depth measurements to verify results
    - i. When a product interface is detected, the IM will have a steady light and buzzer tone
    - ii. When a water interface is detected, the IM will have an intermittent light and buzzer tone
  - b. If no water is detected within the well, note that the well is "dry"
- 7. Turn off probe and measure the well depth by slowly lowering the probe into the well until the tip of the probe is touching the bottom of the well (point right after the tape/line is no longer taught from the weight of the probe)
  - a. Be sure that probe is not stuck along the side of the well pipe prior to reading the measurement. Repeat well depth measurement to verify results
- 8. Remove probe slowly from well while being careful that tape is not scraping sides of the well pipe
- 9. Remove grounding cable from grounding point (e.g., flushmount, monument)
- 10. Place/tighten well cap (e.g., J-plug) back on top of well pipe
- 11. Secure flushmount/monument using appropriate tooling or close lock
- 12. Decontaminate the probe/tape with Alconox and deionized or distilled water. Place probe in holder and tighten reel once complete

## 4 References

1) ASTM International. Designation: D4750-87 (Reapproved 2001); Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well).



## STANDARD OPERATING PROCEDURE BLADDER PUMP SAMPLING

## 1 Introduction

Low flow purging and sampling involves extracting groundwater at rates comparable to ambient groundwater flow (typically less than 500 mL/min), so that the drawdown of the water level is minimized, and the mixing of stagnant water, with water from the screened intake area in a well is reduced.

Stabilization parameters of the purged water are monitored before a sample is taken, thus low flow methods facilitate equilibrium with the surrounding formation water and produces samples that are representative of the formation water.

Bladder pump sampling causes the least amount of alteration in sample integrity as compared to other sample retrieval methods. Fluid enters the pump through the fluid inlet check valve at the bottom of the pump body via hydrostatic pressure. The pump MUST be submerged to operate. The bladder then fills with fluid. Compressed air enters the space between the bladder and the interior of the pump housing. The intake check valve closes, and the discharge check valve (top) opens. Compressed air squeezes the bladder, pushing the fluid to the surface. The discharge check valve prevents back flow from the discharge tubing. Air does not contact the sample. The bladder prevents contact between the pump driven air and the sample. All wetted pump parts are 316 Grade stainless steel to ensure the purity of the sample is maintained. Water comes into contact with the inside of the bladder (Teflon) and sample tubing. One bladder (Teflon) is dedicated to each well and the pump is cleaned thoroughly after every well.

## 2 Equipment Required

- Interface or water level meter
- Batteries (9 V)
- Bladder Pump (appropriate size for MW)
- Controller Unit and Battery with charger
- Bladders (enough for all MWs)
- Waterra (appropriate size for air/water connections)
- Hanna Pen/YSI/Horiba
- Lab Sampling Bottles and Ice
- String/Rope for safety loop
- Deionized or distilled water/Alconox (cleaning probe between wells)
- Nitrile gloves
- Stopwatch



- Bucket
- Graduated Cylinder
- Field notebook/field forms
- Well keys/Ratchet set/Allen keys
- Garbage bags
- First Aid Kit
- Field package and access agreements as needed

## **3** Procedure

### 3.1 Before Going to Site

- 1. Review monitoring well locations and BH logs to determine well depth and screen locations
- 2. Carry out site specific health and safety plan
- 3. Coordinate site access with PM/client

### 3.2 On-Site Activities

When sampling using a bladder pump be sure to place the pump in the middle to upper screen. This ensures formation water is entering the pump and reducing the mix of stagnant water into the sample

- 1. Decontaminate all non disposable field equipment with Alconox and deionized or distilled water
- 2. Remove lock or well cap casing and casing cap
- 3. Using notebook/field forms to note project #, well ID, date and time
- 4. Record water level (refer to water level SOP)
- 5. Start sampling at the least contaminated monitoring well based on previous sampling events or olfactory/visual observations during well development
- 6. Before deploying the sampling pump, secure a safety cable from an anchoring point at or near the wellhead to the top of the pump
- 7. Attach waterra (usually ¼") to the air line fitting and water (discharge) fitting.
- 8. Carefully lower the bladder pump into the well using the reverse coil method to avoid kinking, until the desired depth is achieved.
- 9. Attach power supply and turn on the pump. Purge well until field parameters have stabilized. (refer to Hanna Meter GW Stabilization SOP).

\*Note - When field parameters are measured record the measurements, the elapsed time, the flow rate and the water level in the monitoring well. Do not allow the pump to run dry. If the pumping rate exceeds the well recharge rate, decrease the fill/discharge time. Only lower the pump further into the well screen if needed, and continue pumping



- If the calculated purge volume is small, the measurements should be taken frequently to provide enough measurements to evaluate stability (every 15-30 seconds). If the purge volume is large, measurements taken every 3-5 minutes may be sufficient
- Stabilization occurs when:
  - Temperature is within (3%)
  - o pH (+/- 0.1 unit)
  - Conductivity is within (3%)
- 10. Collect and dispose of purge water as specified in the site specific sampling plan
- 11. Assemble the appropriate lab supplied bottles
- 12. Turn pump on, increase the cycle time and reduce the pressure to the minimum that will allow the sample to come to the surface and not induce significant drawdown
- 13. Collect samples in the lab supplied bottles
- 14. Cap the sample bottle tightly and place labeled sample container in cooler
- 15. On completion, remove the pump/tubing from the well and clean the pump thoroughly with de-ionized water and alconox solution prior to moving to the next well
- 16. Replace the tubing and bladder with new dedicated tubing and bladder for each well
- 17. Package samples and complete necessary paperwork
- 18. Decontaminate all non disposable field equipment with de-ionized water and alconox solution prior to moving to the next well
- 19. Replace the well cap and secure casing

## **4** References

Ontario Ministry of the Environment, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*.

# **APPENDIX D**



| SAMPLING/TESTING METHODS | SYMBOLS & ABBREVIATIONS                   | ENVIRONMENTAL SAMPLES                           |
|--------------------------|-------------------------------------------|-------------------------------------------------|
| SS: split spoon sample   | MC: moisture content                      | M&I: metals and inorganic parameters            |
| 33. spiit spoon sample   | LL: liquid limit                          | PAH: polycyclic aromatic hydrocarbon            |
| AS: auger sample         | PL: plastic limit                         | PCB: polychlorinated biphenyl                   |
| GS: grab sample          | PI: plasticity index                      | VOC: volatile organic compound                  |
| FV: shear vane           | γ: soil unit weight (bulk)                | PHC: petroleum hydrocarbon                      |
| DP: direct push          | G <sub>s</sub> : specific gravity         | BTEX: benzene, toluene, ethylbenzene and xylene |
| DF. dilect push          | S <sub>u</sub> : undrained shear strength | PPM: parts per million                          |
| PMT: pressuremeter test  |                                           |                                                 |
| ST: shelby tube          | 1st water level measurement               |                                                 |
| CORE: soil coring        | 2nd water level measurement most recent   |                                                 |
| RUN: rock coring         | water level measurement                   |                                                 |

RUN: rock coring

### FIELD MOISTURE (based on tactile inspection)

DRY: no observable pore water

MOIST: inferred pore water, not observable (i.e. grey, cool, etc.) WET: visible pore water

### COMPOSITION

| Term                 | % by weight |
|----------------------|-------------|
| trace silt           | <10         |
| some silt            | 10 - 20     |
| silt <b>y</b>        | 20 - 35     |
| sand <b>and</b> silt | >35         |

### **ASTM STANDARDS**

### ASTM D1586 Standard Penetration Test (SPT)

Driving a 51 mm O.D. split-barrel sampler ("split spoon") into soil with a 63.5 kg weight free falling 760 mm. The blows required to drive the split spoon 300 mm ("bpf") after an initial penetration of 150 mm is referred to as the N-Value.

### ASTM D3441 Cone Penetration Test (CPT)

Pushing an internal still rod with a outer hollow rod ("sleeve") tipped with a cone with an apex angle of 60° and a cross-sectional area of 1000 mm<sup>2</sup> into soil. The resistance is measured in the sleeve and at the tip to determine the skin friction and the tip resistance.

### ASTM D2573 Field Vane Test (FVT)

Pushing a four blade vane into soil and rotating it from the surface to determine the torque required to shear a cylindrical surface with the vane. The torque is converted to the shear strength of the soil using a limit equilibrium analysis.

### ASTM D1587 Shelby Tubes (ST)

Pushing a thin-walled metal tube into the in-situ soil at the bottom of a borehole, removing the tube and sealing the ends to prevent soil movement or changes in moisture content for the purposes of extracting a relatively undisturbed sample.

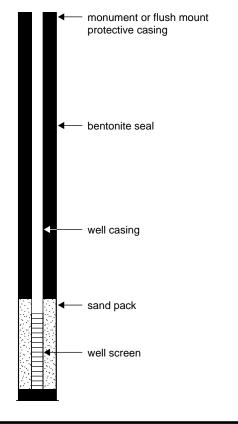
### ASTM D4719 Pressuremeter Test (PMT)

Place an inflatable cylindrical probe into a pre-drilled hole and expanding it while measuring the change in volume and pressure in the probe. It is inflated under either equal pressure increments or equal volume increments. This provides the stress-strain response of the soil.

|                  |          | _ |                 |   |
|------------------|----------|---|-----------------|---|
| COHESIONLES      | <u>S</u> |   | <u>COHESIVE</u> |   |
| Relative Density | N-Value  |   | Consistency     | Ν |
| Very Loose       | <4       |   | Very Soft       |   |
| Loose            | 4 - 10   |   | Soft            |   |
| Compact          | 10 - 30  |   | Firm            |   |
| Dense            | 30 - 50  |   | Stiff           | ; |
| Very Dense       | >50      |   | Very Stiff      | 1 |
|                  |          |   | Hard            |   |
|                  |          |   |                 |   |

#### V-Value Su (kPa) <2 <12 2 - 4 12 - 25 4 - 8 25 - 50 8 - 15 50 - 100 15 - 30 100 - 200 >30 >200

ED)


D

Ν

NEE

NGI

### WELL LEGEND



### **ROCK CORE TERMINOLOGY (MTO SHALE)**

TCR Total Core Recovery the total length of recovery (soil or rock) per run, as a percentage of the drilled length

- SCR Solid Core Recovery the total length of sound full-diameter rock core pieces per run, as a percentage of the drilled length
- RQD Rock Quality Designation the sum of all pieces of sound rock core in a run which are 10 cm or greater in length, as a percentage of the drilled length

Natural Fracture Frequency (typically per 0.3 m) The number of natural discontinuities (joints, faults, etc.) which are present per 0.3m. Ignores mechanical or drill-induced breaks, and closed discontinuities (e.g. bedding planes).

### LOGGING DISCONTINUITIES

#### **Spacing in Discontinuity Sets Discontinuity Type** Roughness (Barton et al.) (ISRM 1981) **BP** bedding parting vc very close < 60 mm CL cleavage 5 cm 60 - 200 mm С close CS crushed seam М mod. close 0.2 to 0.6 m VR Very rough F7 fracture zone 0.6 to 2 m JRC = 16 - 18 W wide MB mechanical break very wide VW > 2 m IS infilled seam JRC = 18 - 20 JT Joint R Rough SS shear surface JRC = 12 - 14 **Aperture Size** SZ shear zone JRC = 14 - 16 VN vein т closed / tight < 0.5 mm vo void s Smooth **GA** gapped 0.5 to 10 mm OP open *JRC* = 4 - 6 > 10 mm Coating CN Clean JRC = 6 - 8 Planarity SN Stained SL Slickensided PR Planar ОХ Oxidized (visually assessed) UN Undulating VN Veneer POL Polished ST Stepped Coating (>1 mm) СТ JRC = 0 - 2 IR Irregular DIS Discontinuous **Dip Inclination** JRC = 2 - 4 CU Curved horizontal/flat 0-20° н 20 - 50° D dipping

| OP  | מיידא | AT |
|-----|-------|----|
| GE. | NER   | АЬ |

sub-vertical

vertical

SV

ν

Degree of Weathering (after MTO, RR229 Evaluation of Shales for Construction Projects)

| Zone | Degree              | Description                                                                                |
|------|---------------------|--------------------------------------------------------------------------------------------|
| Z1   | unweathered         | shale, regular jointing                                                                    |
| Z2   |                     | angular blocks of unweathered shale, no matrix, with chemically weathered but intact shale |
| Z3   | partially weathered | soil-like matrix with frequent angular shale fragments < 25mm diameter                     |
| Z4a  |                     | soil-like matrix with occasional shale fragments < 3mm diameter                            |
| Z4b  | fully weathered     | soil-like matrix only                                                                      |

Strength classification (after Marinos and Hoek, 2001; ISRM 1981b)

50 - 90°

90±°

| Grade |                  | UCS<br>(MPa) | Field Estimate (Description)                                      | Vol 3, 1            |
|-------|------------------|--------------|-------------------------------------------------------------------|---------------------|
| R6    | extremely strong | > 250        | can only be chipped by geological hammer                          | Very th             |
| R5    | very strong      | 100 - 250    | requires many blows from geological hammer                        | Thickly             |
| R4    | strong           | 50 - 100     | requires more than one blow from geological hammer                | Mediur              |
| R3    | medium strong    | 25 - 50      | can't be scraped, breaks under one blow from<br>geological hammer | Thinly I<br>Very th |
| R2    | weak             | 5 - 25       | can be peeled / scraped with knife with difficulty                | Lamina              |
| R1    | very weak        | 1 - 5        | easily scraped / peeled, crumbles under firm blow of geo. hammer  | Thinly I            |
| R0    | extremely weak   | < 1          | indented by thumbnail                                             |                     |
|       |                  |              |                                                                   |                     |

Bedding Thickness (Q. J. Eng. Geology, Vol 3, 1970)

| > 2 m       |
|-------------|
| 0.6 – 2m    |
| 200 - 600mm |
| 60 – 200mm  |
| 20 – 60mm   |
| 6 – 20mm    |
| < 6mm       |
|             |



Date Started : Nov 17, 2022 Position : E: 652908, N: 4854420 (UTM 17T) Elev. Datum : Geodetic

## **BOREHOLE LOG 1**

| e No.                        | . : 22-279                                                                         |              |          |           |              | Project : 1095 Kingston Rd., Pickering Client : Plaza P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | artne                |
|------------------------------|------------------------------------------------------------------------------------|--------------|----------|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                              | stratigraphy                                                                       |              |          | sampl     | es           | undrained shear strength (kPa)         headspace vapour (ppm)         lab (           O unconfined         + field vane         × hexane         □ isobutiviene         lab (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | data                 |
|                              |                                                                                    |              |          | · ·       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                   |
| <u>elev</u><br>depth         |                                                                                    | bo           |          |           | alue         | U     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     • </th <th>nents</th> | nents                |
| depth<br>(m)                 | description                                                                        | graphic log  | number   |           | SPT N-value  | Image: SP1 N-Values (opr)     moisture / plasticity     to t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rain siz<br>ributior |
| elev<br>depth<br>(m)<br>87.4 | GROUND SURFACE                                                                     | grap         | nun      | type      | SPT          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (MIT)<br>R SA        |
|                              | 150mm ASPHALT                                                                      |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              | FILL, clayey silt, sandy, some gravel, trace                                       |              | 1        | SS        | 18           | _ 87 551: H-Ms, Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s, ORP               |
| -                            | rock fragments, trace construction debris,<br>trace wood fragments, trace asphalt, |              | 2        | SS        | 14           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23 3                 |
|                              | compact, brown, moist<br>at 0.8 m, light grey silt partings                        |              | <u> </u> |           |              | - 86 <u>SS2:</u> PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|                              | at 0.8 m, light grey slit partings                                                 |              | 3        | SS        | 13           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              | -                                                                                  |              | Ľ        |           |              | 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| - 1                          | at 2.3 m, trace orange staining, trace cinders, loose                              |              | 4        | SS        | 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| 84. <u>4</u>                 |                                                                                    |              |          |           |              | 3 – – SS4: BTEX, H-Ms,<br>ORPs, PAHs, PHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , Metal<br>Cs, VOC   |
| 3.0                          | SAND AND SILT, Some clay, trace rock                                               | <b> </b>     | 5        | SS        | 17           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              | fragments, trace gravel, compact, grey,<br>moist                                   |              | Ĺ        |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| -                            | (GLACIAL TILL)                                                                     | ø            |          |           |              | 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| 82.8                         |                                                                                    |              |          |           |              | _ 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| 4.6                          | SANDY SILT, clayey, trace gravel, compact,                                         | 0            | 6        | SS        | 27           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| _                            | grey, moist<br>(GLACIAL TILL)                                                      |              | -        |           |              | 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| -                            |                                                                                    |              |          |           |              | - 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| _                            | 4                                                                                  |              |          |           |              | 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| _                            | 1                                                                                  | : <b> </b> • | 7        | SS        | 26           | _ 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|                              |                                                                                    |              | .        |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| _                            | 1                                                                                  |              |          |           |              | 7 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| -                            |                                                                                    |              | ·        |           |              | _ 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| _                            | at 7.6 m, dense                                                                    |              | 8        | SS        | 31           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              |                                                                                    | <b> </b>     | $\vdash$ |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| -                            | 1                                                                                  |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| 78.3                         |                                                                                    |              | 1        |           |              | 9 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| 9.1                          | SAND AND SILT, trace clay, trace gravel, very dense, grey, wet                     |              | 9        | SS        | 64           | _ 78 <b>X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                              |                                                                                    |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| 9.1                          |                                                                                    |              | :        |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| -                            |                                                                                    |              | <u> </u> |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 549                  |
| -                            | -                                                                                  |              | 10       | SS        | 53           | 11-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| _                            | 1                                                                                  |              | $\vdash$ |           |              | 5510 B1EX, PHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a, vut               |
|                              |                                                                                    |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| _                            | at 12.2 m, trace rock fragments, compact                                           |              | -        |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| -                            |                                                                                    |              | 11       | SS        | 29           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| -                            | 4                                                                                  |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              |                                                                                    |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| 73.7<br>13.7                 |                                                                                    |              | -        |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| -                            | fragments, trace shale fragments, very                                             |              | 12       | SS        | 96           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| -                            | dense, grey, wet                                                                   |              |          |           |              | 73 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ndina (              |
| 72.2                         | 1                                                                                  |              |          |           |              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nuniy (              |
| 15.2                         | INFERRED BEDROCK                                                                   | X            | 13/      | <u>ss</u> | 100/         | 72 15.2m: Auger gri<br>(10min) to 15.7m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nding                |
| 71.7                         |                                                                                    | Ň            | 14/      | SS        | 75mm<br>80 / | 15.7m: Auger ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                              | END OF BOREHOLE                                                                    |              | _        |           | 50mm         | GROUNDWATER LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uodi                 |
|                              | Refusal on inferred bedrock                                                        |              |          |           |              | <u>date depth (m) elevation (m)</u><br>Nov 23, 2022 5.3 82.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|                              |                                                                                    |              |          |           |              | Jan 12, 2024 5.0 82.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|                              | Borehole was filled with drill water upon<br>completion of drilling.               |              |          |           |              | Jan 16, 2024 4.9 82.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|                              |                                                                                    |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              | 50 mm dia. monitoring well installed.<br>No. 10 screen                             |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              |                                                                                    |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              |                                                                                    |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              |                                                                                    |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              |                                                                                    |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                              |                                                                                    |              |          |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |



Date Started : Dec 16, 2022 Position : E: 652908, N: 4854421 (UTM 17T) Elev. Datum : Geodetic

## **BOREHOLE LOG 1A**

| File                         | No.          | : 22-279                                                                               |           |        |       |         |       |         | Proj      | <b>ect</b> : 1095 Kingston F                                                                | d., Pickering Clie                 | nt : Pla                    | aza Partners                            |
|------------------------------|--------------|----------------------------------------------------------------------------------------|-----------|--------|-------|---------|-------|---------|-----------|---------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|-----------------------------------------|
|                              |              | stratigraphy                                                                           |           |        | sampl | es      | (m)   |         |           | undrained shear strength (kPa)<br>O unconfined + field vane<br>pocket penetrometer Lab Vane | headspace vapour (ppm)<br>X hexane |                             | lab data<br>and                         |
| .:<br>p                      | elev         | h description                                                                          | boj       |        |       | value   | scale | details | ation (m) | 40 80 120 160                                                                               | methane     100 200 300            | unstabilized<br>water level | comments                                |
| drill method :<br>MiniProbe  | depth<br>(m) |                                                                                        | graphic I | number | ype   | SPT N-v | depth | well c  | elevat    | SPT N-values (bpf)<br>X dynamic cone                                                        | PL MC LL                           | unst<br>wat                 | grain size<br>distribution (%)<br>(MIT) |
|                              | 87.4         | GROUND SURFACE                                                                         | gr        | Ъ      | tyl   | SF      | 0-    |         |           | 10 20 30 40                                                                                 | 10 20 30                           |                             | GR SA SI CL                             |
| Tube Direct Push<br>OD=50 mm | _            | 150mm ASPHALT<br>FILL, clayey silt, sandy, some gravel, trace<br>rock fragments, brown |           | 1      | DP    |         | -     |         | - 87      |                                                                                             | X                                  | <u>DP1:</u> PH              | -                                       |
| Dual Tube<br>OD=             | 85.9<br>1.5  |                                                                                        |           | 2      | DP    |         | 1     |         | - 86      |                                                                                             |                                    | <u>DP2:</u> PH              |                                         |

### END OF BOREHOLE

Borehole was dry upon completion of drilling.



Date Started : Dec 16, 2022 Position : E: 652908, N: 4854419 (UTM 17T) Elev. Datum : Geodetic

## **BOREHOLE LOG 1B**

| File                               | No.                         | : 22-279                                                           |            |        |      |       |         |         | Proj         | <b>ect</b> : 1095 Kingston F                                | d., Pickering Clie                 | nt : Pl                     | aza Partners                   |
|------------------------------------|-----------------------------|--------------------------------------------------------------------|------------|--------|------|-------|---------|---------|--------------|-------------------------------------------------------------|------------------------------------|-----------------------------|--------------------------------|
|                                    |                             | stratigraphy                                                       |            |        | samp | es    | (m)     |         |              | undrained shear strength (kPa)<br>O unconfined + field vane | headspace vapour (ppm)<br>× hexane |                             | lab data                       |
| .:<br>p                            | elev                        | description                                                        | boj        |        |      | value | scale ( | details | levation (m) | pocket penetrometer ■ Lab Vane     40 80 120 160            | ■ methane<br>100 200 300           | unstabilized<br>water level | and<br>comments                |
| drill method :<br><i>MiniProbe</i> | <u>elev</u><br>depth<br>(m) |                                                                    | graphic lo | number |      | N-va  | epth s  | ell d   |              | SPT N-values (bpf)<br>X dynamic cone                        | PL MC LL                           | unsta<br>wate               | grain size<br>distribution (%) |
|                                    | 87.4                        | GROUND SURFACE                                                     | grap       | unu    | type | SPT   | т<br>0- | 3       | e            | 10 20 30 40                                                 | 10 20 30                           |                             | (MIT)<br>GR SA SI CL           |
| Push                               |                             | 150mm ASPHALT                                                      | ***        |        |      |       | Ű       |         | -87          |                                                             |                                    |                             | _                              |
| Tube Direct F<br>OD=50 mm          |                             | FILL, clayey silt, sandy, some gravel, trace rock fragments, brown |            | 1      | DP   |       | - 1     |         | - 07         |                                                             | 2                                  | <u>DP1:</u> PH              | · ·                            |
| a                                  | 85.9                        |                                                                    |            | 2      | DP   |       |         |         | - 86         |                                                             | 8                                  | <u>DP2:</u> PH              | -                              |
| D                                  | 1.5                         |                                                                    |            |        |      |       |         |         |              |                                                             |                                    |                             |                                |

#### END OF BOREHOLE

Borehole was dry upon completion of drilling.



Date Started : Nov 16, 2022 Position : E: 652819, N: 4854413 (UTM 17T) Elev. Datum : Geodetic

## **BOREHOLE LOG 2**

| lie                         | NO.           | : 22-279                                                             |             |        |      |              |                 |              | Proj             | ect              | 1095                | King             | ston I        | (a., Pi    | ckerin               | ig Clie     | ent : Plaza Partn                              |
|-----------------------------|---------------|----------------------------------------------------------------------|-------------|--------|------|--------------|-----------------|--------------|------------------|------------------|---------------------|------------------|---------------|------------|----------------------|-------------|------------------------------------------------|
| Ţ                           |               | stratigraphy                                                         |             |        | samp | les          | (E)             |              |                  | O uncont         |                     | 🕂 fie            | ld vane       |            | ace vapour<br>hexane | isobutylene | lab data                                       |
| .                           |               |                                                                      | _           |        |      | en           | depth scale (m) | well details | elevation (m)    | pocket<br>40     | : penetrome<br>) 80 | ter 🔳 La<br>120  | b Vane<br>160 | 1          | ■ met<br>00 20       |             | and<br>≝a comments                             |
| CME 55                      | elev<br>depth | description                                                          | ic loc      | er     |      | 4-valt       | th sc           | ll de        | 'atio            | SPT N-           | values (b           |                  |               |            | re / plastici        | ty          | arain siz<br>qrain siz                         |
| ME 55                       | (m)           |                                                                      | graphic log | number | type | SPT N-value  | dep             | we           | elev             |                  | imic cone           |                  | >             | F          |                      |             | (MIT)                                          |
| 0                           | 87.7          | GROUND SURFACE                                                       |             | É      | t)   | S            | 0-              |              |                  | 10               | 20                  | 30               | 40            |            | 10 20                | 0 30        | GR SA                                          |
|                             | _             | FILL, silt and clay, some sand, trace gravel,                        |             | 1      | SS   | 14           |                 |              |                  |                  |                     |                  |               | <b>k</b>   | 0                    |             | 10 11 4                                        |
|                             | _             | light grey silt partings, stiff to hard, brownish                    |             |        |      | 01           | 1-              |              | -87              |                  |                     |                  |               | <b>_</b>   |                      |             | SS1: H-Ms, Metals, ORP                         |
| / stem augers -<br>)=215 mm |               | grey, moist                                                          |             | 2      | SS   | 31           |                 |              | -                |                  |                     |                  |               | K I        | 0                    |             | SS2: BTEX, PAHs, PHCs<br>VOCs                  |
| 15 mr                       | _             |                                                                      |             | 3      | SS   | 39           |                 |              | - 86             |                  |                     |                  |               | <b>x</b> 1 | 0                    |             | _                                              |
| D=2                         | -             |                                                                      |             | Ľ      |      |              | 2-              |              | _                |                  |                     |                  |               | T          | Ŭ                    |             | SS3: H-Ms, Metals, ORP<br>PAHs                 |
|                             | -             |                                                                      |             | 4      | SS   | 38           |                 |              | - 85             |                  |                     |                  | U             | R I        | 0                    |             |                                                |
|                             | _             | at 2.0 m trace cand                                                  |             | ┣      |      |              | 3-              | -            | 00               |                  |                     |                  |               |            |                      |             |                                                |
| ,                           | _             | at 3.0 m, trace sand                                                 |             | 5      | SS   | 46           |                 |              | _                |                  |                     |                  |               | R          | 0                    |             | 016                                            |
| Η                           | _             |                                                                      |             |        |      |              | 1               |              | - 84             |                  |                     |                  | 1             |            |                      |             | 1                                              |
|                             | 02 1          |                                                                      |             | ×      |      |              | 4.              |              | -                |                  |                     |                  |               |            |                      |             |                                                |
|                             | 83.1<br>4.6   | SAND AND SILT, clayey, trace gravel, dense                           |             | 6      |      | 70           | 1               |              | -83              |                  |                     |                  |               |            |                      |             |                                                |
|                             |               | (GLACIAL TILL)                                                       |             |        | SS   | 70           | 5-              |              |                  |                  |                     |                  |               | 414<br>1   | 0                    |             | <u>SS6:</u> PHCs                               |
|                             | -             |                                                                      | ø           |        |      |              |                 | _            | - 82             |                  |                     |                  |               |            |                      |             |                                                |
|                             | _             |                                                                      |             |        |      |              | 6-              |              | 02               |                  |                     |                  |               |            |                      |             |                                                |
|                             | _             |                                                                      | 0           | 7      | SS   | 70           |                 |              | -                |                  |                     |                  |               | 23         | 0                    |             |                                                |
|                             | _             |                                                                      |             | -      |      |              | 7-              |              | -81              |                  |                     |                  |               |            |                      |             |                                                |
|                             |               |                                                                      | 6           |        |      |              |                 |              | -                |                  |                     |                  |               |            |                      |             |                                                |
|                             | _             |                                                                      |             | -      |      |              | 1               |              | - 80             |                  |                     |                  | +             | L          |                      |             | -                                              |
| <u>م</u> د                  | _             |                                                                      | 6           | 8      | SS   | 46           | 8-              |              |                  |                  |                     |                  |               | R.         | 0                    |             |                                                |
| 0D=135 mm                   | -             |                                                                      |             |        |      |              |                 |              | _ 70             |                  |                     |                  |               |            |                      |             |                                                |
| D=15                        | _             |                                                                      |             |        |      |              | 9-              |              |                  |                  |                     |                  |               |            |                      |             |                                                |
| - 7                         | _             | at 9.1 m, sandy silt, clayey, trace rock<br>fragments                | 9           | 9      | SS   | 31           |                 |              |                  |                  |                     |                  |               | BD<br>BD   | 0                    |             | 4 33 4                                         |
|                             |               |                                                                      |             | -      |      |              | 10 -            |              | - 78             |                  |                     |                  | _             |            |                      |             | <u>SS9:</u> BTEX, PHCs, VOCs                   |
|                             |               |                                                                      | 9           |        |      |              | 10-             | 7 目          | <u>}</u>         |                  |                     |                  |               |            |                      |             |                                                |
| ╞                           | 77.0          |                                                                      |             |        |      |              | -               | 11日          | -77              |                  |                     |                  |               |            |                      |             |                                                |
|                             | _             | SILTY SAND, trace clay, trace gravel, dense, grey, wet               | 臣           | 10     | SS   | 30           | 11-             | し目           |                  |                  |                     |                  |               | ¢a         | 0                    |             |                                                |
|                             | -             | (GLÁCIAL TILL)                                                       | 園           |        |      |              |                 | 修訂           | - 76             |                  |                     |                  |               |            |                      |             |                                                |
|                             | 75.5          |                                                                      | 間           |        |      |              | 12 -            |              |                  |                  |                     |                  |               |            |                      |             |                                                |
| Ī                           | 12.2          | INFERRED BEDROCK, shale fragments                                    |             | 11     | SS   | 50 /<br>75mm | 1               |              | .1-              |                  |                     |                  |               | 3          | 0                    |             | 12.2m: auger grinding                          |
|                             |               |                                                                      |             |        |      |              | 40              |              | - 75             |                  |                     |                  |               |            |                      |             |                                                |
|                             | _             |                                                                      | $\otimes$   |        |      |              | 13 -            |              |                  |                  |                     |                  |               |            |                      |             |                                                |
| $\square$                   | 74.0          |                                                                      | 1           | 12/    | SS   | 100/         |                 |              | - 74             |                  |                     |                  |               | <b>.</b>   |                      | 0           | 13.6 m: spoon bouncing<br>at 13.7 m, top of so |
| ·                           |               | WHITBY FORMATION<br>(See rock core log for details)                  |             | ľ      |      | 75mm         | 14 -            |              |                  |                  |                     |                  |               |            |                      |             | at 13.7 m, top of so<br>bedrock                |
|                             | -             |                                                                      |             | 1      | RUN  |              |                 |              | -73              |                  |                     |                  |               |            |                      |             |                                                |
|                             |               |                                                                      |             |        |      |              | 15 -            |              |                  |                  |                     |                  |               |            |                      |             |                                                |
|                             | _             |                                                                      |             | 1      |      |              |                 |              |                  |                  |                     |                  |               |            |                      |             |                                                |
| 0D=96 mm                    | _             |                                                                      |             | 2      | RUN  |              | 16 -            |              | -72              |                  |                     |                  |               |            |                      |             | 1                                              |
| =96 L                       |               |                                                                      |             | 1      |      |              |                 |              | -                |                  |                     |                  |               |            |                      |             |                                                |
| OD                          | _             |                                                                      |             | -      |      |              |                 |              | -71              |                  |                     |                  |               |            |                      |             |                                                |
|                             | _             |                                                                      |             |        |      |              | 17 -            |              | -                |                  |                     |                  |               |            |                      |             |                                                |
|                             | -             |                                                                      |             | 3      | RUN  |              |                 |              | - 70             |                  |                     |                  |               |            |                      |             | 1                                              |
|                             | _             |                                                                      |             | 1      |      |              | 18 -            |              | _                |                  |                     |                  |               |            |                      |             |                                                |
| ,                           | <u> </u>      |                                                                      |             | 4      | RUN  |              |                 |              |                  |                  |                     |                  |               |            |                      |             |                                                |
|                             | 68.9<br>18.8  | I                                                                    |             | 4      | l    |              | 1               |              | - 69             |                  |                     |                  | 1             | I          |                      |             | 1                                              |
|                             |               | END OF BOREHOLE                                                      |             |        |      |              |                 |              | da               |                  |                     | WATEI<br>epth (n |               |            | tion (m)             |             |                                                |
|                             |               |                                                                      |             |        |      |              |                 |              | Nov 23           | 3, 2022          | <u>d</u>            | 5.8              | 4             | 8          | 1.9                  | L           |                                                |
|                             |               | Borehole was filled with drill water upon<br>completion of drilling. |             |        |      |              |                 |              | Jan 12<br>Jan 16 | , 2024<br>, 2024 |                     | 5.3<br>5.4       |               | 8          | 2.4<br>2.3           |             |                                                |
|                             |               | 50 mm dia. monitoring well installed.                                |             |        |      |              |                 |              |                  |                  |                     |                  |               |            |                      |             |                                                |
|                             |               | No. 10 screen                                                        |             |        |      |              |                 |              |                  |                  |                     |                  |               |            |                      |             |                                                |
|                             |               |                                                                      |             |        |      |              |                 |              |                  |                  |                     |                  |               |            |                      |             |                                                |



Date Started : Nov 16, 2022 Position : E: 652819, N: 4854413 (UTM 17T) Elev. Datum : Geodetic

## **ROCK CORE LOG 2**

| Fil                 | e No.       | . : 22-279                                                                                                                                                                                                                  |                            |                                         |                | I                            | Proj      | <b>ect</b> : 10                                               | 95 King                       | gston Rd., Pick                                      | ering Client : Plaza Parti                                                                                                                                    | ners              |
|---------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|----------------|------------------------------|-----------|---------------------------------------------------------------|-------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| depth (m)           | graphic log | stratigraphy<br>Rock coring started at 13.7m below grade                                                                                                                                                                    | elev<br>depth<br>(m)       | recovery                                | elevation (m)  | shale<br>weathering<br>zones | 5 2<br>es | S (MPa)<br>5 50 100 250<br>stimated<br>trength<br>2 2 2 2 2 2 | natural fracture<br>frequency | laboratory<br>testing                                | notes and comments                                                                                                                                            | elevation (m)     |
| -<br>- 14<br>-      |             | WHITBY FORMATION<br>Shale, black, thinly bedded to medium bedded,<br>weak to medium strong; joints are horizontal,<br>closed, clean;<br>Overall shale: 100%, limestone: 0%<br>at 13.7 m (Elev. 74.0 m), transition to sound | 13.7                       | TCR = <b>100</b> %<br>SCR = <b>80</b> % | -              |                              | •         |                                                               | 1<br>1<br>0                   | <b>EI. 73.4m</b> :<br>UCS = 14.7 MPa<br>E = 4.20 GPa | 14.1 / 73.5 - 14.2 / 73.5m: IS clay                                                                                                                           | -                 |
| -<br>-<br>- 15<br>- |             | Run 1 : 0% limestone<br>100% shale                                                                                                                                                                                          | 72.5                       | RQD = <b>56</b> %                       | 73             |                              |           |                                                               | 3<br>1+RZ                     | E = 4.20 GFa<br><b>Y</b> = 25.5 kN/m <sup>3</sup>    | 14.6 / 73.1 - 14.7 / 73.0m: IS clay<br>14.7 / 73.0 - 14.7 / 73.0m: FC SV<br>15.0 / 72.7 - 15.1 / 72.6m: Rubbilized zor<br>15.1 / 72.6 - 15.1 / 72.6m: IS clay | 73                |
| -<br>-<br>- 16<br>- |             |                                                                                                                                                                                                                             | 15.2<br>R2                 | TCR = 100%<br>SCR = 91%<br>RQD = 66%    | 72 -           |                              |           |                                                               | 1<br>2<br>1<br>0              |                                                      | <b>16.0 / 71.7 - 16.1 / 71.6m:</b> clay seam                                                                                                                  | -<br>72<br>-      |
| -<br>-<br>- 17      |             | Run 2 : 0% limestone<br>100% shale                                                                                                                                                                                          | 71.0                       |                                         | 71 -           |                              |           |                                                               | 0                             |                                                      |                                                                                                                                                               | -<br>71<br>-      |
| -<br>-<br>-<br>-18  |             | Run 3 : 0% limestone<br>100% shale                                                                                                                                                                                          | R3                         | TCR = 99%<br>SCR = 99%<br>RQD = 87%     | -<br>-<br>70 - |                              |           |                                                               | 1<br>1<br>2<br>0              |                                                      | 17.8 / 69.9 - 17.8 / 69.9m: IS clay                                                                                                                           | -<br>-<br>70<br>- |
| -                   |             | Run 4: 0% limestone<br>100% shale                                                                                                                                                                                           | 69.6<br>18.1<br>R4<br>68.9 | TCR = 100%<br>SCR = 100%<br>RQD = 100%  | -<br>-<br>69 - |                              |           |                                                               | 0                             |                                                      |                                                                                                                                                               | -<br>-<br>69 -    |

END OF COREHOLE

file: 22-279 gint-ge-lt-djx8wg3.gpj



Date Started : Dec 16, 2022 Position : E: 652820, N: 4854413 (UTM 17T) Elev. Datum : Geodetic

## **BOREHOLE LOG 2A**

| File                               | No.                         | : 22-279                                                          |         |        |       |         |       |         | Proj      | ect : 1095 Kingston F                                                 | Rd., Pickering Clie                             | <b>nt</b> : Plaza Partners                               |
|------------------------------------|-----------------------------|-------------------------------------------------------------------|---------|--------|-------|---------|-------|---------|-----------|-----------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|
|                                    |                             | stratigraphy                                                      |         |        | sampl | es      | (m)   |         |           | undrained shear strength (kPa)<br>O unconfined + field vane           | headspace vapour (ppm)<br>X hexane              | lab data                                                 |
| : po                               | elev                        | 4                                                                 | boj     |        |       | N-value | scale | details | tion (m)  | pocket penetrometer Lab Vane     40 80 120 160     SPT N-values (bpf) | methane<br>100 200 300<br>moisture / plasticity | and<br>and<br>comments<br>grain size<br>distribution (%) |
| drill method :<br><i>MiniProbe</i> | <u>elev</u><br>depth<br>(m) | description                                                       | graphic | number | type  | SPT N-v | depth | well o  | elevation | X dynamic cone                                                        |                                                 | grain size<br>distribution (%)<br>(MIT)                  |
| Ä                                  | 87.7                        | GROUND SURFACE                                                    | gr      | л      | ty    | sı      | 0-    |         |           | 10 20 30 40                                                           | 10 20 30                                        | GR SA SI CL                                              |
|                                    | _                           | 150mm ASPHALT //<br>FILL, silt and clay, some sand, trace gravel, |         |        |       |         | -     |         | - 87      |                                                                       |                                                 |                                                          |
| Dual Tube Direct Push<br>OD=50 mm  | _                           | light grey silt partings, brownish grey, moist                    |         | 1A     | DP    |         | 1     |         | - 07      |                                                                       |                                                 | DP1A: PHCs                                               |
| Tube Dir<br>OD=50 r                | _                           |                                                                   |         | 1B     | DP    |         | - 2-  |         | - 86      |                                                                       |                                                 |                                                          |
| — Dual                             |                             |                                                                   |         | 2      | DP    |         | - 2   |         | -         |                                                                       | は                                               |                                                          |
|                                    | 84. <u>7</u><br>3.0         |                                                                   |         | 3      | DP    |         | 3-    |         | - 85      |                                                                       |                                                 | 1                                                        |

### END OF BOREHOLE

Borehole was dry upon completion of drilling.



Date Started : Dec 16, 2022 Position : E: 652819, N: 4854413 (UTM 17T) Elev. Datum : Geodetic

## **BOREHOLE LOG 2B**

| File                             | No.                         | : 22-279                                                                                     |             | · · · · · |      |           | Proj     | ect : 1095 Kingston R | d., Pickering Clie | <b>nt</b> : Plaza Partners                                              |                                                |                                                     |
|----------------------------------|-----------------------------|----------------------------------------------------------------------------------------------|-------------|-----------|------|-----------|----------|-----------------------|--------------------|-------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|
|                                  |                             | stratigraphy                                                                                 |             | s         | ampl | es        | (m)      |                       |                    | undrained shear strength (kPa)<br>O unconfined + field vane             | headspace vapour (ppm)<br>× hexane isobutylene | lab data                                            |
|                                  |                             |                                                                                              |             |           |      | e         | scale (r | ails                  | Ē                  | <ul> <li>pocket penetrometer Lab Vane</li> <li>40 80 120 160</li> </ul> | ■ methane<br>100 200 300                       | নু and<br>≌ ≧ comments                              |
| drill method :<br>MiniProbe      | <u>elev</u><br>depth<br>(m) | description                                                                                  | graphic log | number    | е    | T N-value | depth sc | well details          | elevation          | SPT N-values (bpf)<br>X dynamic cone                                    | moisture / plasticity PL MC LL                 | comments<br>grain size<br>distribution (%)<br>(MIT) |
| drill<br>Min                     | 87.7                        | GROUND SURFACE                                                                               | gra         | nu        | type | SPT       | 0-       | -                     |                    | 10 20 30 40                                                             | 10 20 30                                       | GR SA SI CL                                         |
|                                  |                             | 150mm ASPHALT                                                                                |             |           |      |           | 0        |                       | -                  |                                                                         |                                                | -                                                   |
|                                  | _                           | FILL, silt and clay, some sand, trace gravel, light grey silt partings, brownish grey, moist |             |           |      |           | _        |                       | - 87               |                                                                         |                                                |                                                     |
| st Pus                           | -                           | light grey sitt partings, brownish grey, moist                                               |             | 1A        | DP   |           | 1 -      |                       | L                  | D D                                                                     |                                                | DP1A: PHCs                                          |
| ual Tube Direct Push<br>0D=50 mm | _                           |                                                                                              |             | 1B        | DP   |           | -        |                       | - 86               | 3                                                                       |                                                | _                                                   |
| -Dual Ti<br>0                    | _                           |                                                                                              |             | 2         | DP   |           | 2 -      |                       | -                  | D                                                                       |                                                | -                                                   |
|                                  | -<br>84. <u>7</u><br>3.0    |                                                                                              |             | 3         | DP   |           | 3-       |                       | - 85               |                                                                         |                                                | -                                                   |

### END OF BOREHOLE

Borehole was dry upon completion of drilling.



Date Started : Dec 16, 2022 Position : E: 652818, N: 4854414 (UTM 17T) Elev. Datum : Geodetic

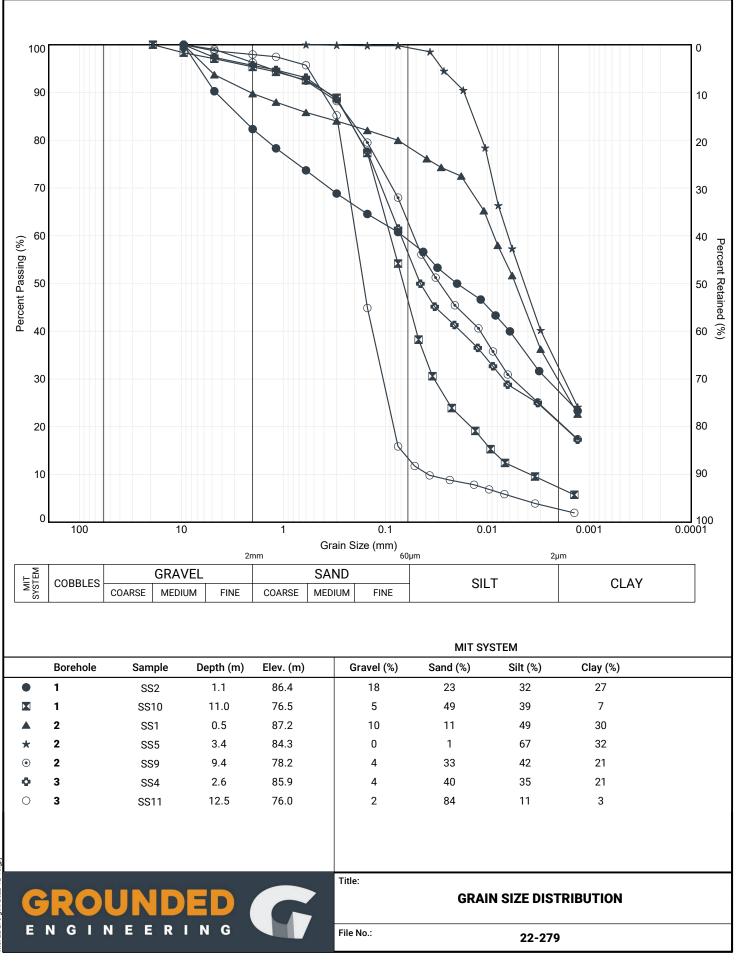
## **BOREHOLE LOG 2C**

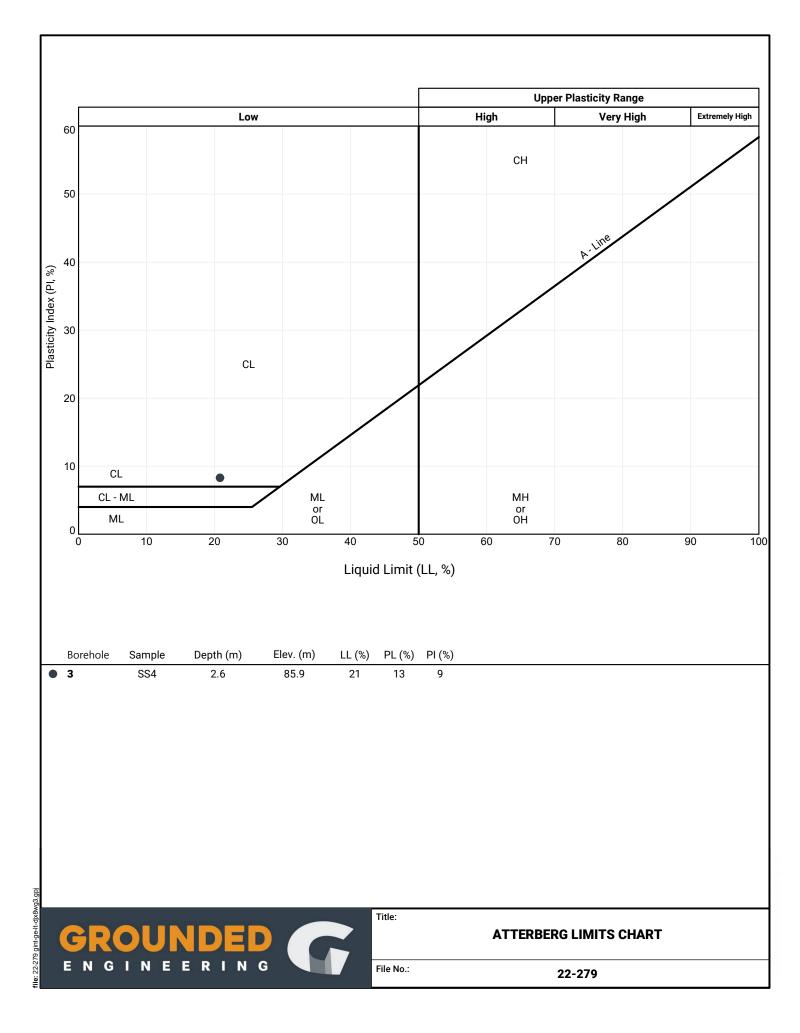
| File                          | No.                         | : 22-279                                       |            |        |       |           |             |              | Proj      | ect : 1095 Kingston Rd., Pickering Client : Plaza Partners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|-----------------------------|------------------------------------------------|------------|--------|-------|-----------|-------------|--------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                             | stratigraphy                                   |            |        | sampl | es        | (m)         |              |           | undrained shear strength (kPa) headspace vapour (ppm) lab data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| .:.<br>.:.                    | elev                        |                                                | log        |        |       | lue       |             | etails       | (m) nc    | Φ pocket penetrometer         ■ Lab Vane         The methane         The methane< |
| drill method :<br>MiniProbe   | <u>elev</u><br>depth<br>(m) | description                                    | graphic lo | number | type  | T N-value | depth scale | well details | elevation | SPT N-values (bpf)<br>X dynamic cone PL MC LL (MT) (MT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| drill<br>Min                  | 87.7                        | GROUND SURFACE                                 | gra        | nu     | typ   | SPT       | 0-          | -            | l .       | 10 20 30 40 10 20 30 GR SA SI C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               |                             | 150mm ASPHALT                                  | ***        |        |       |           | 0           |              | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | -                           | FILL, silt and clay, some sand, trace gravel,  |            |        |       |           | -           |              | -87       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ct Push<br>n                  | -                           | light grey silt partings, brownish grey, moist |            | 1A     | DP    |           | 1           |              |           | DP1A: PHCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ual Tube Direct F<br>OD=50 mm | _                           |                                                |            | 1B     | DP    |           | -           |              | - 86      | E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dual Tu<br>OI                 | -                           |                                                |            | 2      | DP    |           | 2 -         |              | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ī                             | -<br>84.Z                   |                                                |            | 3      | DP    |           | -           |              | - 85      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | 3.0                         |                                                | KXXX)      |        |       |           | 3-          |              | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

### END OF BOREHOLE

Borehole was dry upon completion of drilling.




Date Started : Nov 14, 2022 Position : E: 652872, N: 4854527 (UTM 17T) Elev. Datum : Geodetic


## **BOREHOLE LOG 3**

|                       | : 22-279                                                                         |               |          |          |               |                 |              |                          | ct: 1095                                           | -                      |              |            | -                     |             | ent : Plaza Partr                                                                                                                                       |
|-----------------------|----------------------------------------------------------------------------------|---------------|----------|----------|---------------|-----------------|--------------|--------------------------|----------------------------------------------------|------------------------|--------------|------------|-----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | stratigraphy                                                                     |               |          | samp     | les           | Ê               | (0           |                          | undrained sheat<br>o unconfined<br>pocket penetron | + fiel                 | d vane       |            |                       | isobutylene | lab data<br>रून and                                                                                                                                     |
| alay                  |                                                                                  | 6             |          |          | ne            | cale            | etails       | m (m                     | 40 80                                              |                        | 160          | 10         | methan 200            | ie<br>300   |                                                                                                                                                         |
| CWE 22<br>(m)<br>88.5 | description                                                                      | lic lo        | ber      |          | N-va          | depth scale (m) | well details | elevation (m)            | SPT N-values (                                     |                        |              | moisture   | e / plasticity        | Ш           | and<br>and<br>and<br>comments<br>and<br>and<br>comments<br>and<br>and<br>and<br>and<br>comments<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>and |
| S UE 2<br>88.5        | GROUND SURFACE                                                                   | graphic log   | number   | type     | SPT N-value   | de              | Ŵ            | ele                      | X dynamic cone                                     |                        | 40           | 1          | - Ö                   |             | (MIT)<br>GR SA                                                                                                                                          |
|                       | 150mm ASPHALT                                                                    | / 🗙           | _        |          |               | 0-              |              |                          | 10 20                                              | 0 30                   | 40           |            | 20                    |             | GR SA                                                                                                                                                   |
| -                     | FILL, clayey silt, sandy, some gravel, trace                                     | ´ 🗱           | 1        | SS       | 10            | -               |              | - 88                     |                                                    |                        | _            | ₽⊗         |                       |             | SS1: H-Ms, Metals, ORP                                                                                                                                  |
| 87.4<br>1.1           | asphalt, orange staining, compact, brown, moist                                  |               | 2        | SS       | 19            | 1 -             |              | -                        |                                                    |                        |              | ex o       |                       |             | SS2: BTEY DALLS DUCS                                                                                                                                    |
| - "B                  | at 0.8 m, sandy silt                                                             | / []]         |          |          |               | -               |              | - 87                     |                                                    |                        | $\leftarrow$ |            |                       |             | <u>SS2:</u> BTEX, PAHs, PHCs<br>VOCs                                                                                                                    |
| D=215 r               | SAND AND SILT, clayey, trace gravel, orange staining, dense to very dense, grey, | 0             | 3        | SS       | 61            | 2-              |              | -                        |                                                    |                        | 17           | <b>x</b> o |                       |             | SS3: H-Ms, Metals, ORP                                                                                                                                  |
| -                     | moist<br>(GLACIAL TILL)                                                          |               | 4        | SS       | 44            | -               |              | - 86                     |                                                    |                        | +            | <b>K</b> O | <u>н</u>              |             | 4 40 3                                                                                                                                                  |
| -                     | at 2.3 m, no staining                                                            | 0             |          |          |               | 3 —             |              | -                        |                                                    |                        |              |            |                       |             | SS4: PAHs                                                                                                                                               |
|                       |                                                                                  |               | 5        | SS       | 48            | _               |              | - 85                     |                                                    |                        |              | <b>k</b> o |                       |             |                                                                                                                                                         |
|                       |                                                                                  | 0             |          |          |               | 4 —             |              | _                        |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
|                       |                                                                                  |               |          |          |               | _               |              | - 84                     |                                                    |                        |              |            |                       |             | _                                                                                                                                                       |
|                       |                                                                                  |               | 6        | SS       | 86            | 5               |              | _                        |                                                    |                        |              | ux o       |                       |             |                                                                                                                                                         |
|                       |                                                                                  |               |          |          |               | 5               |              | -83                      |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
|                       |                                                                                  | •             |          |          |               |                 |              | - 65                     |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
|                       |                                                                                  |               | 7        | SS       | 50 /          | 6 —             | Ţ            |                          |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| -                     |                                                                                  | 0             |          |          | 125mm         | -               |              | - 82                     |                                                    |                        | 1            |            |                       |             |                                                                                                                                                         |
| -                     |                                                                                  |               |          |          |               | 7 –             |              | -                        |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| -                     |                                                                                  | 0             |          |          |               | -               |              | -81                      |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| -                     |                                                                                  |               | 8        | SS       | 36            | 8 —             |              | -                        |                                                    | •                      |              |            | D                     |             |                                                                                                                                                         |
|                       |                                                                                  | 0             |          |          |               | -               |              | - 80                     |                                                    |                        | $\mathbf{h}$ |            |                       |             |                                                                                                                                                         |
|                       |                                                                                  |               |          |          |               | 9 —             |              | -                        |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| 79.1<br>9.4           | at 9.1 m, sandy<br>SAND, some silt, trace clay, trace gravel,                    |               | 9A<br>9B | SS<br>SS | 54            | -               |              | - 79                     |                                                    |                        |              | ka C<br>Ka | )<br>O                |             | SS9A: BTEX, PHCs, VOC                                                                                                                                   |
|                       | very dense, grey, wet                                                            |               | :        |          |               | 10 —            |              | -                        |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
|                       |                                                                                  |               | :        |          |               | _               |              | -78                      |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| ,                     |                                                                                  |               | 10       | SS       | 52            | 11 —            |              | _                        |                                                    |                        |              | 50         | 0                     |             |                                                                                                                                                         |
| 00=135 mm             |                                                                                  |               | -        |          |               | _               |              | -77                      |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| 0D=1:                 |                                                                                  |               | :        |          |               | 12 -            |              |                          |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
|                       |                                                                                  |               |          | SS       | 56            |                 |              |                          |                                                    |                        |              | -          |                       |             | 2 84                                                                                                                                                    |
|                       |                                                                                  |               |          | - 33     | 50            |                 |              |                          |                                                    |                        |              | urs.       | 0                     |             | 2 04                                                                                                                                                    |
|                       |                                                                                  |               |          |          |               | 13 –            | . 目.         | ·]                       |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
|                       | at 13.7 m, some gravel                                                           |               |          |          |               |                 |              | 75                       |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| -                     |                                                                                  |               | . 12     | SS       | 92            | 14 -            |              | 1                        |                                                    |                        |              | ox (       | 0                     |             |                                                                                                                                                         |
| -                     |                                                                                  |               |          |          |               |                 |              | -74                      |                                                    |                        | _            |            |                       |             | _                                                                                                                                                       |
| -                     |                                                                                  |               | :        |          |               | 15 -            |              | (-                       |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| -                     | at 15.2 m, trace shale fragments                                                 |               | 13       | SS       | 50 /<br>150mm | -               |              | - 73                     |                                                    |                        |              | o xo       |                       |             |                                                                                                                                                         |
| -                     |                                                                                  |               | :        |          |               | 16 —            |              | -                        |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| 71.7                  |                                                                                  |               |          |          |               | -               |              | -72                      |                                                    |                        |              |            |                       |             | _                                                                                                                                                       |
| 16.8                  | CLAYEY SILT, some sand, trace gravel,                                            | 101           | 14       | SS       | 50 /<br>75mm  | 17 —            |              | -                        |                                                    |                        |              | ux o       |                       |             | 16.8m: Auger refusal                                                                                                                                    |
|                       | trace shale fragments, hard, grey, moist<br>(GLACIAL TILL)                       |               |          |          |               | _               |              | -71                      |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
|                       |                                                                                  | Í             | 1        |          |               | 18 —            |              | -                        |                                                    |                        |              |            |                       |             | 17.7m: Auger grinding (15min) to 18.3m                                                                                                                  |
| 70.2<br>18.3          | INFERRED BEDROCK                                                                 | $\mathbb{R}$  | 15/      | SS       | 65/           | _               |              | -70 -                    |                                                    |                        |              |            | 0                     |             | 18.3m: Auger grinding<br>(20min) to 19.3m                                                                                                               |
|                       |                                                                                  | $\rightarrow$ |          |          | 50mm          | 19 —            |              | _                        |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
| 69.1<br>19.4          |                                                                                  | $\mathbb{K}$  | 1        | SS       | 80/           |                 |              |                          |                                                    |                        |              |            | 0                     |             | 19.3m: Auger refusal                                                                                                                                    |
| 12.4                  | END OF BOREHOLE                                                                  |               |          |          | 75mm          |                 |              |                          | GROUNI                                             |                        |              |            |                       |             |                                                                                                                                                         |
|                       | Refusal on inferred bedrock                                                      |               |          |          |               |                 |              | <u>date</u><br>Nov 30, 2 |                                                    | <b>depth (m</b><br>6.5 |              | elevat     | <u>ion (m)</u><br>2.0 |             |                                                                                                                                                         |
|                       | Borehole was filled with drill water upon                                        |               |          |          |               |                 |              | Jan 12, 2                | 2024                                               | 6.2<br>6.2             |              | 82         | 2.3<br>2.3            |             |                                                                                                                                                         |
|                       | completion of drilling.                                                          |               |          |          |               |                 |              | Jan 16, 2                | UZ4                                                | 0.2                    |              | 82         | 2.3                   |             |                                                                                                                                                         |
|                       | 50 mm dia. monitoring well installed.                                            |               |          |          |               |                 |              |                          |                                                    |                        |              |            |                       |             |                                                                                                                                                         |
|                       | No. 10 screen                                                                    |               |          |          |               |                 |              |                          |                                                    |                        |              |            |                       |             |                                                                                                                                                         |

# **APPENDIX E**







# **APPENDIX F**









### CA40212-NOV22 R1

22-279-202, 1095 Kingston Rd, Pickering ON

Prepared for

Grounded Engineering Inc.



### First Page

| CLIENT DETAILS |                                            | LABORATORY DETAILS |                                           |
|----------------|--------------------------------------------|--------------------|-------------------------------------------|
| Client         | Grounded Engineering Inc.                  | Project Specialist | Maarit Wolfe, Hon.B.Sc                    |
|                |                                            | Laboratory         | SGS Canada Inc.                           |
| Address        | 1 Banigan Drive                            | Address            | 185 Concession St., Lakefield ON, K0L 2H0 |
|                | Toronto, Ontario                           |                    |                                           |
|                | M4H1G3. Canada                             |                    |                                           |
| Contact        | Vivi Tran                                  | Telephone          | 705-652-2000                              |
| Telephone      | 647-264-7928                               | Facsimile          | 705-652-6365                              |
| Facsimile      |                                            | Email              | Maarit.Wolfe@sgs.com                      |
| Email          | vtran@groundedeng.ca                       | SGS Reference      | CA40212-NOV22                             |
| Project        | 22-279-202, 1095 Kingston Rd, Pickering ON | Received           | 11/16/2022                                |
| Order Number   |                                            | Approved           | 11/23/2022                                |
| Samples        | Soil (12)                                  | Report Number      | CA40212-NOV22 R1                          |
|                |                                            | Date Reported      | 01/11/2024                                |

#### COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 5 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:029850

Hexane Matrix Spike; Recovery is outside control limits; the overall quality control for this analysis has been assessed and was determined to be acceptable.

SIGNATORIES

Maarit Wolfe, Hon.B.Sc

funde



### TABLE OF CONTENTS

| First Page         | 1       |
|--------------------|---------|
| Index              | 2       |
| Results            | 3-14    |
| Exceedance Summary | 15      |
| QC Summary         | . 16-24 |
| Legend             | 25      |
| Annexes            | 26      |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                            |                  |      | Sample Number | 6          | 7          | 8          | 9          | 10         | 11         | 12         | 13         |
|---------------------------------------------------------|------------------|------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
| MATRIX: SOIL                                            |                  |      | Sample Name   | BH3 SS1    | BH3 SS2    | BH3 SS3    | BH3 SS4    | BH3 SS9A   | DUP-1-M&I  | BH2 SS1    | BH2 SS2    |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Park  |                  |      | Sample Name   | Soil       |
| LT = REG 133 / SOIL / FINE - TABLE 2 - Residential/Park | dand - UNDEFINED |      | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                               | Units            | RL   | L1            | Result     |
| BTEX                                                    |                  |      |               |            |            |            |            |            |            |            |            |
| Benzene                                                 | hð\ð             | 0.02 | 0.17          |            | < 0.02     |            |            | < 0.02     |            |            | < 0.02     |
| Ethylbenzene                                            | µg/g             | 0.05 | 1.6           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Toluene                                                 | hð/ð             | 0.05 | 6             |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Xylene (total)                                          | µg/g             | 0.05 | 25            |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| m/p-xylene                                              | µg/g             | 0.05 |               |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| o-xylene                                                | hð/ð             | 0.05 |               |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Hydrides                                                |                  |      |               |            |            |            |            |            |            |            |            |
| Antimony                                                | hð/ð             | 0.8  | 7.5           | < 0.8      |            | < 0.8      |            |            | < 0.8      | < 0.8      |            |
| Arsenic                                                 | µg/g             | 0.5  | 18            | 1.9        |            | 1.1        |            |            | 1.1        | 2.0        |            |
| Selenium                                                | hð/ð             | 0.7  | 2.4           | < 0.7      |            | < 0.7      |            |            | < 0.7      | < 0.7      |            |
| Metals and Inorganics                                   |                  |      |               |            |            |            |            |            |            |            |            |
| Moisture Content                                        | %                | no   |               | 10.1       | 8.3        | 6.8        | 6.4        | 9.7        | 7.2        | 7.3        | 10.1       |
| Barium                                                  | hð/ð             | 0.1  | 390           | 24         |            | 54         |            |            | 52         | 260        |            |
| Beryllium                                               | hð/ð             | 0.02 | 5             | 0.23       |            | 0.26       |            |            | 0.27       | 0.18       |            |
| Boron                                                   | µg/g             | 1    | 120           | 7          |            | 5          |            |            | 5          | 4          |            |
| Cadmium                                                 | µg/g             | 0.05 | 1.2           | 0.05       |            | < 0.05     |            |            | < 0.05     | < 0.05     |            |
| Chromium                                                | µg/g             | 0.5  | 160           | 7.8        |            | 11         |            |            | 11         | 5.9        |            |
| Cobalt                                                  | µg/g             | 0.01 | 22            | 3.4        |            | 3.7        |            |            | 3.8        | 2.7        |            |
| Copper                                                  | µg/g             | 0.1  | 180           | 6.9        |            | 8.3        |            |            | 8.6        | 6.2        |            |
| Lead                                                    | µg/g             | 0.1  | 120           | 6.7        |            | 4.1        |            |            | 4.2        | 12         |            |
| Molybdenum                                              | µg/g             | 0.1  | 6.9           | 0.3        |            | 0.2        |            |            | 0.1        | 0.6        |            |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                                   |           |       | Sample Number | r 6        | 7          | 8          | 9          | 10         | 11         | 12         | 13         |
|----------------------------------------------------------------|-----------|-------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                                                |           |       | Sample Name   | BH3 SS1    | BH3 SS2    | BH3 SS3    | BH3 SS4    | BH3 SS9A   | DUP-1-M&I  | BH2 SS1    | BH2 SS2    |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - U | INDEFINED |       | Sample Matrix | c Soil     | Soil       | Soil       | Soil       | Soil       | Soil       | Soil       | Soil       |
|                                                                |           |       | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                                      | Units     | RL    | L1            | Result     |
| Metals and Inorganics (continued)                              |           |       |               |            |            |            |            |            |            |            |            |
| Nickel                                                         | µg/g      | 0.5   | 130           | 8.0        |            | 8.5        |            |            | 8.3        | 8.8        |            |
| Silver                                                         | µg/g      | 0.05  | 25            | < 0.05     |            | < 0.05     |            |            | < 0.05     | < 0.05     |            |
| Thallium                                                       | µg/g      | 0.02  | 1             | 0.10       |            | 0.10       |            |            | 0.09       | 0.18       |            |
| Uranium                                                        | hð/ð      | 0.002 | 23            | 0.50       |            | 0.67       |            |            | 0.72       | 0.54       |            |
| Vanadium                                                       | hð/ð      | 3     | 86            | 9          |            | 17         |            |            | 17         | 6          |            |
| Zinc                                                           | hð/ð      | 0.7   | 340           | 16         |            | 21         |            |            | 23         | 10         |            |
| Water Soluble Boron                                            | hð/ð      | 0.5   | 1.5           | < 0.5      |            | < 0.5      |            |            | < 0.5      | < 0.5      |            |
| Other (ORP)                                                    |           |       |               |            |            |            |            |            |            |            |            |
| Mercury                                                        | ug/g      | 0.05  | 1.8           | < 0.05     |            | < 0.05     |            |            | < 0.05     | < 0.05     |            |
| Sodium Adsorption Ratio                                        | No unit   | 0.2   | 5             | 7.1        |            | 5.1        |            |            | 5.3        | 5.3        |            |
| SAR Calcium                                                    | mg/L      | 0.2   |               | 16.4       |            | 15.6       |            |            | 10.9       | 13.8       |            |
| SAR Magnesium                                                  | mg/L      | 0.3   |               | 3.8        |            | 3.5        |            |            | 2.6        | 2.6        |            |
| SAR Sodium                                                     | mg/L      | 0.1   |               | 123        |            | 84.7       |            |            | 75.4       | 81.1       |            |
| Conductivity                                                   | mS/cm     | 0.002 | 0.7           | 1.0        |            | 0.62       |            |            | 0.52       | 0.60       |            |
| Н                                                              | pH Units  | 0.05  |               | 8.06       |            | 8.11       |            |            | 8.10       | 8.22       |            |
| Chromium VI                                                    | hā/ð      | 0.2   | 10            | < 0.2      |            | < 0.2      |            |            | < 0.2      | < 0.2      |            |
| Free Cyanide                                                   | µg/g      | 0.05  | 0.051         | < 0.05     |            | < 0.05     |            |            | < 0.05     | < 0.05     |            |



### CA40212-NOV22 R1

### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                                           |       |      | Sample Number | 6          | 7          | 8          | 9          | 10         | 11         | 12         | 13         |
|------------------------------------------------------------------------|-------|------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
| MATRIA. SOIL                                                           |       |      | Sample Name   | BH3 SS1    | BH3 SS2    | BH3 SS3    | BH3 SS4    | BH3 SS9A   | DUP-1-M&I  | BH2 SS1    | BH2 SS2    |
|                                                                        |       |      | Sample Natrix | Soil       |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UNDEFINED | )     |      | Sample Matrix | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                                              | Units | RL   | L1            | Result     |
| PAHs                                                                   |       |      |               |            |            |            |            |            |            |            |            |
| Acenaphthene                                                           | µg/g  | 0.05 | 29            |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Acenaphthylene                                                         | µg/g  | 0.05 | 0.17          |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Anthracene                                                             | µg/g  | 0.05 | 0.74          |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Benzo(a)anthracene                                                     | µg/g  | 0.05 | 0.63          |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Benzo(a)pyrene                                                         | µg/g  | 0.05 | 0.3           |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Benzo(b+j)fluoranthene                                                 | µg/g  | 0.05 | 0.78          |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Benzo(ghi)perylene                                                     | µg/g  | 0.1  | 7.8           |            | < 0.1      |            | < 0.1      |            |            |            | < 0.1      |
| Benzo(k)fluoranthene                                                   | µg/g  | 0.05 | 0.78          |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Chrysene                                                               | µg/g  | 0.05 | 7.8           |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Dibenzo(a,h)anthracene                                                 | µg/g  | 0.06 | 0.1           |            | < 0.06     |            | < 0.06     |            |            |            | < 0.06     |
| Fluoranthene                                                           | µg/g  | 0.05 | 0.69          |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Fluorene                                                               | µg/g  | 0.05 | 69            |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Indeno(1,2,3-cd)pyrene                                                 | µg/g  | 0.1  | 0.48          |            | < 0.1      |            | < 0.1      |            |            |            | < 0.1      |
| 1-Methylnaphthalene                                                    | µg/g  | 0.05 |               |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| 2-Methylnaphthalene                                                    | µg/g  | 0.05 |               |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Methylnaphthalene, 2-(1-)                                              | µg/g  | 0.05 | 3.4           |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Naphthalene                                                            | µg/g  | 0.05 | 0.75          |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Phenanthrene                                                           | µg/g  | 0.05 | 7.8           |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |
| Pyrene                                                                 | µg/g  | 0.05 | 78            |            | < 0.05     |            | < 0.05     |            |            |            | < 0.05     |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

|                                                                 |            |      |               |            | _          |            |            |            |            |            | 10         |
|-----------------------------------------------------------------|------------|------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
| MATRIX: SOIL                                                    |            |      | Sample Number | 6          | 7          | 8          | 9          | 10         | 11         | 12         | 13         |
|                                                                 |            |      | Sample Name   | BH3 SS1    | BH3 SS2    | BH3 SS3    | BH3 SS4    | BH3 SS9A   | DUP-1-M&I  | BH2 SS1    | BH2 SS2    |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UN | NDEFINED   |      | Sample Matrix | Soil       |
|                                                                 |            |      | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                                       | Units      | RL   | L1            | Result     |
| PHCs                                                            |            |      |               |            |            |            |            |            |            |            |            |
| F1 (C6-C10)                                                     | µg/g       | 10   | 65            |            | < 10       |            |            | < 10       |            |            | < 10       |
| F1-BTEX (C6-C10)                                                | µg/g       | 10   | 65            |            | < 10       |            |            | < 10       |            |            | < 10       |
| F2 (C10-C16)                                                    | µg/g       | 10   | 150           |            | < 10       |            |            | < 10       |            |            | < 10       |
| F3 (C16-C34)                                                    | µg/g       | 50   | 1300          |            | < 50       |            |            | < 50       |            |            | 331        |
| F4 (C34-C50)                                                    | µg/g       | 50   | 5600          |            | < 50       |            |            | < 50       |            |            | 673        |
| F4G-sg (GHH)                                                    | µg/g       | 200  | 5600          |            |            |            |            |            |            |            | 2160       |
| Chromatogram returned to baseline at nC50                       | Yes / No   | no   |               |            | YES        |            |            | YES        |            |            | NO         |
| SVOC Surrogates                                                 |            |      |               |            |            |            |            |            |            |            |            |
| Surr 2-Fluorobiphenyl                                           | Surr Rec % | no   |               |            | 96         |            | 98         |            |            |            | 93         |
| Surr 4-Terphenyl-d14                                            | Surr Rec % | no   |               |            | 101        |            | 103        |            |            |            | 95         |
| Surr 2-Methylnaphthalene-D10                                    | Surr Rec % | no   |               |            | 93         |            | 94         |            |            |            | 89         |
| Surr Fluoranthene-D10                                           | Surr Rec % | no   |               |            | 97         |            | 95         |            |            |            | 94         |
| THMs (VOC)                                                      |            |      |               |            |            |            |            |            |            |            |            |
| Bromodichloromethane                                            | µg/g       | 0.05 | 1.9           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Bromoform                                                       | µg/g       | 0.05 | 0.26          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Dibromochloromethane                                            | µg/g       | 0.05 | 2.9           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                           |                   |      | Sample Number | 6          | 7          | 8          | 9          | 10         | 11         | 12         | 13         |
|--------------------------------------------------------|-------------------|------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                                        |                   |      | Sample Name   | BH3 SS1    | BH3 SS2    | BH3 SS3    | BH3 SS4    | BH3 SS9A   | DUP-1-M&I  | BH2 SS1    | BH2 SS2    |
| .1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Park | kland - UNDEFINED |      | Sample Matrix | Soil       |
|                                                        |                   |      | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                              | Units             | RL   | L1            | Result     |
| VOC Surrogates                                         |                   |      | 1             |            |            |            |            |            |            |            |            |
| Surr 1,2-Dichloroethane-d4                             | Surr Rec %        | no   |               |            | 98         |            |            | 99         |            |            | 98         |
| Surr 4-Bromofluorobenzene                              | Surr Rec %        | no   |               |            | 92         |            |            | 90         |            |            | 89         |
| Surr 2-Bromo-1-Chloropropane                           | Surr Rec %        | no   |               |            | 81         |            |            | 84         |            |            | 78         |
| /OCs                                                   |                   |      |               |            |            |            |            |            |            |            |            |
| Acetone                                                | hð\ð              | 0.5  | 28            |            | < 0.5      |            |            | < 0.5      |            |            | < 0.5      |
| Bromomethane                                           | hð\ð              | 0.05 | 0.05          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Carbon tetrachloride                                   | hð\ð              | 0.05 | 0.12          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Chlorobenzene                                          | hð\ð              | 0.05 | 2.7           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Chloroform                                             | hð\ð              | 0.05 | 0.18          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,2-Dichlorobenzene                                    | hð\ð              | 0.05 | 1.7           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,3-Dichlorobenzene                                    | hð\ð              | 0.05 | 6             |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,4-Dichlorobenzene                                    | hā\ā              | 0.05 | 0.097         |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Dichlorodifluoromethane                                | hð\ð              | 0.05 | 25            |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,1-Dichloroethane                                     | hā\ā              | 0.05 | 0.6           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,2-Dichloroethane                                     | hā\ā              | 0.05 | 0.05          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,1-Dichloroethylene                                   | hā\ā              | 0.05 | 0.05          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| trans-1,2-Dichloroethylene                             | hā\ā              | 0.05 | 0.75          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| cis-1,2-Dichloroethylene                               | hā\ā              | 0.05 | 2.5           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,2-Dichloropropane                                    | hā\ð              | 0.05 | 0.085         |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| cis-1,3-dichloropropene                                | hā\ð              | 0.03 |               |            | < 0.03     |            |            | < 0.03     |            |            | < 0.03     |
| trans-1,3-dichloropropene                              | hā\ð              | 0.03 |               |            | < 0.03     |            |            | < 0.03     |            |            | < 0.03     |
| 1,3-dichloropropene (total)                            | hð\ð              | 0.05 | 0.081         |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                                   |           |      | Sample Number | 6          | 7          | 8          | 9          | 10         | 11         | 12         | 13         |
|----------------------------------------------------------------|-----------|------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                                                |           |      | Sample Name   | BH3 SS1    | BH3 SS2    | BH3 SS3    | BH3 SS4    | BH3 SS9A   | DUP-1-M&I  | BH2 SS1    | BH2 SS2    |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - U | INDEFINED |      | Sample Matrix | Soil       |
|                                                                |           |      | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                                      | Units     | RL   | L1            | Result     |
| VOCs (continued)                                               |           |      |               |            |            |            |            |            |            |            |            |
| Ethylenedibromide                                              | µg/g      | 0.05 | 0.05          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| n-Hexane                                                       | hð/ð      | 0.05 | 34            |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Methyl ethyl ketone                                            | hð/ð      | 0.5  | 44            |            | < 0.5      |            |            | < 0.5      |            |            | < 0.5      |
| Methyl isobutyl ketone                                         | hð/ð      | 0.5  | 4.3           |            | < 0.5      |            |            | < 0.5      |            |            | < 0.5      |
| Methyl-t-butyl Ether                                           | hð/ð      | 0.05 | 1.4           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Methylene Chloride                                             | hð/ð      | 0.05 | 0.96          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Styrene                                                        | µg/g      | 0.05 | 2.2           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Tetrachloroethylene                                            | hð/ð      | 0.05 | 2.3           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,1,1,2-Tetrachloroethane                                      | hð/ð      | 0.05 | 0.05          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,1,2,2-Tetrachloroethane                                      | µg/g      | 0.05 | 0.05          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,1,1-Trichloroethane                                          | µg/g      | 0.05 | 3.4           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| 1,1,2-Trichloroethane                                          | hð/ð      | 0.05 | 0.05          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Trichloroethylene                                              | hð/ð      | 0.05 | 0.52          |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Trichlorofluoromethane                                         | hð/ð      | 0.05 | 5.8           |            | < 0.05     |            |            | < 0.05     |            |            | < 0.05     |
| Vinyl Chloride                                                 | µg/g      | 0.02 | 0.022         |            | < 0.02     |            |            | < 0.02     |            |            | < 0.02     |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                                  |           |      | Sample Number | 14         | 15         | 16         | 17         |
|---------------------------------------------------------------|-----------|------|---------------|------------|------------|------------|------------|
|                                                               |           |      | Sample Name   | BH2 SS3    | DUP-1-PAH  | BH2 SS9    | DUP-1-VOC  |
| 1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - U | INDEFINED |      | Sample Matrix | Soil       | Soil       | Soil       | Soil       |
| <b>_</b>                                                      |           |      | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                                     | Units     | RL   | L1            | Result     | Result     | Result     | Result     |
| BTEX                                                          |           |      |               |            |            |            |            |
| Benzene                                                       | µg/g      | 0.02 | 0.17          |            |            | < 0.02     | < 0.02     |
| Ethylbenzene                                                  | µg/g      | 0.05 | 1.6           |            |            | < 0.05     | < 0.05     |
| Toluene                                                       | hð\ð      | 0.05 | 6             |            |            | < 0.05     | < 0.05     |
| Xylene (total)                                                | hð/ð      | 0.05 | 25            |            |            | < 0.05     | < 0.05     |
| m/p-xylene                                                    | hð\ð      | 0.05 |               |            |            | < 0.05     | < 0.05     |
| o-xylene                                                      | µg/g      | 0.05 |               |            |            | < 0.05     | < 0.05     |
| Hydrides                                                      |           |      |               |            |            |            |            |
| Antimony                                                      | hð/ð      | 0.8  | 7.5           | < 0.8      |            |            |            |
| Arsenic                                                       | µg/g      | 0.5  | 18            | 2.4        |            |            |            |
| Selenium                                                      | µg/g      | 0.7  | 2.4           | < 0.7      |            |            |            |
| Metals and Inorganics                                         |           |      |               |            |            |            |            |
| Moisture Content                                              | %         | no   |               | 13.1       | 11.9       | 10.0       | 9.7        |
| Barium                                                        | µg/g      | 0.1  | 390           | 98         |            |            |            |
| Beryllium                                                     | hð/ð      | 0.02 | 5             | 0.41       |            |            |            |
| Boron                                                         | µg/g      | 1    | 120           | 7          |            |            |            |
| Cadmium                                                       | µg/g      | 0.05 | 1.2           | 0.05       |            |            |            |
| Chromium                                                      | µg/g      | 0.5  | 160           | 16         |            |            |            |
| Cobalt                                                        | µg/g      | 0.01 | 22            | 6.2        |            |            |            |
| Copper                                                        | µg/g      | 0.1  | 180           | 14         |            |            |            |
| Lead                                                          | µg/g      | 0.1  | 120           | 7.2        |            |            |            |
| Molybdenum                                                    | µg/g      | 0.1  | 6.9           | 0.2        |            |            |            |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                                         |          |       |       | Sample Number | 14         | 15         | 16         | 17         |
|----------------------------------------------------------------------|----------|-------|-------|---------------|------------|------------|------------|------------|
|                                                                      |          |       |       | Sample Name   | BH2 SS3    | DUP-1-PAH  | BH2 SS9    | DUP-1-VOC  |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UNDEFIN | ED       |       |       | Sample Matrix | Soil       | Soil       | Soil       | Soil       |
|                                                                      |          |       |       | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                                            | Units    | RL    | L1    |               | Result     | Result     | Result     | Result     |
| Metals and Inorganics (continued)                                    |          |       |       |               |            |            |            |            |
| Nickel                                                               | µg/g     | 0.5   | 130   |               | 14         |            |            |            |
| Silver                                                               | µg/g     | 0.05  | 25    |               | < 0.05     |            |            |            |
| Thallium                                                             | µg/g     | 0.02  | 1     |               | 0.17       |            |            |            |
| Uranium                                                              | µg/g     | 0.002 | 23    |               | 0.84       |            |            |            |
| Vanadium                                                             | µg/g     | 3     | 86    |               | 23         |            |            |            |
| Zinc                                                                 | µg/g     | 0.7   | 340   |               | 33         |            |            |            |
| Water Soluble Boron                                                  | µg/g     | 0.5   | 1.5   |               | < 0.5      |            |            |            |
| Other (ORP)                                                          |          |       |       | · · ·         |            |            |            |            |
| Mercury                                                              | ug/g     | 0.05  | 1.8   |               | < 0.05     |            |            |            |
| Sodium Adsorption Ratio                                              | No unit  | 0.2   | 5     |               | 1.4        |            |            |            |
| SAR Calcium                                                          | mg/L     | 0.2   |       |               | 22.1       |            |            |            |
| SAR Magnesium                                                        | mg/L     | 0.3   |       |               | 15.6       |            |            |            |
| SAR Sodium                                                           | mg/L     | 0.1   |       |               | 34.7       |            |            |            |
| Conductivity                                                         | mS/cm    | 0.002 | 0.7   |               | 0.48       |            |            |            |
| рН                                                                   | pH Units | 0.05  |       |               | 8.18       |            |            |            |
| Chromium VI                                                          | µg/g     | 0.2   | 10    |               | < 0.2      |            |            |            |
| Free Cyanide                                                         | µg/g     | 0.05  | 0.051 |               | < 0.05     |            |            |            |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                                     |       |      | Sample Number | 14         | 15         | 16         | 17         |
|------------------------------------------------------------------|-------|------|---------------|------------|------------|------------|------------|
|                                                                  |       |      | Sample Name   | BH2 SS3    | DUP-1-PAH  | BH2 SS9    | DUP-1-VOC  |
| 1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UNDE | FINED |      | Sample Matrix |            | Soil       | Soil       | Soil       |
|                                                                  |       |      | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                                        | Units | RL   | L1            | Result     | Result     | Result     | Result     |
| PAHs                                                             |       |      |               |            |            |            |            |
| Acenaphthene                                                     | µg/g  | 0.05 | 29            | < 0.05     | < 0.05     |            |            |
| Acenaphthylene                                                   | µg/g  | 0.05 | 0.17          | < 0.05     | < 0.05     |            |            |
| Anthracene                                                       | µg/g  | 0.05 | 0.74          | < 0.05     | < 0.05     |            |            |
| Benzo(a)anthracene                                               | µg/g  | 0.05 | 0.63          | < 0.05     | < 0.05     |            |            |
| Benzo(a)pyrene                                                   | µg/g  | 0.05 | 0.3           | < 0.05     | < 0.05     |            |            |
| Benzo(b+j)fluoranthene                                           | µg/g  | 0.05 | 0.78          | < 0.05     | < 0.05     |            |            |
| Benzo(ghi)perylene                                               | µg/g  | 0.1  | 7.8           | < 0.1      | < 0.1      |            |            |
| Benzo(k)fluoranthene                                             | µg/g  | 0.05 | 0.78          | < 0.05     | < 0.05     |            |            |
| Chrysene                                                         | µg/g  | 0.05 | 7.8           | < 0.05     | < 0.05     |            |            |
| Dibenzo(a,h)anthracene                                           | µg/g  | 0.06 | 0.1           | < 0.06     | < 0.06     |            |            |
| Fluoranthene                                                     | µg/g  | 0.05 | 0.69          | < 0.05     | < 0.05     |            |            |
| Fluorene                                                         | µg/g  | 0.05 | 69            | < 0.05     | < 0.05     |            |            |
| Indeno(1,2,3-cd)pyrene                                           | µg/g  | 0.1  | 0.48          | < 0.1      | < 0.1      |            |            |
| 1-Methylnaphthalene                                              | µg/g  | 0.05 |               | < 0.05     | < 0.05     |            |            |
| 2-Methylnaphthalene                                              | µg/g  | 0.05 |               | < 0.05     | < 0.05     |            |            |
| Methylnaphthalene, 2-(1-)                                        | µg/g  | 0.05 | 3.4           | < 0.05     | < 0.05     |            |            |
| Naphthalene                                                      | µg/g  | 0.05 | 0.75          | < 0.05     | < 0.05     |            |            |
| Phenanthrene                                                     | µg/g  | 0.05 | 7.8           | < 0.05     | < 0.05     |            |            |
| Pyrene                                                           | µg/g  | 0.05 | 78            | < 0.05     | < 0.05     |            |            |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                                    |            |      | Sample Numbe | <b>r</b> 14         | 15         | 16         | 17         |
|-----------------------------------------------------------------|------------|------|--------------|---------------------|------------|------------|------------|
|                                                                 |            |      | Sample Nam   | BH2 SS3             | DUP-1-PAH  | BH2 SS9    | DUP-1-VOC  |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UN | NDEFINED   |      | Sample Matri | <b>x</b> Soil       | Soil       | Soil       | Soil       |
|                                                                 |            |      | Sample Dat   | <b>e</b> 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                                       | Units      | RL   | L1           | Result              | Result     | Result     | Result     |
| PHCs                                                            |            |      |              |                     |            |            |            |
| F1 (C6-C10)                                                     | hð/ð       | 10   | 65           |                     |            | < 10       | < 10       |
| F1-BTEX (C6-C10)                                                | µg/g       | 10   | 65           |                     |            | < 10       | < 10       |
| F2 (C10-C16)                                                    | µg/g       | 10   | 150          |                     |            | < 10       | < 10       |
| F3 (C16-C34)                                                    | µg/g       | 50   | 1300         |                     |            | < 50       | < 50       |
| F4 (C34-C50)                                                    | µg/g       | 50   | 5600         |                     |            | < 50       | < 50       |
| Chromatogram returned to baseline at nC50                       | Yes / No   | no   |              |                     |            | YES        | YES        |
| SVOC Surrogates                                                 |            |      |              |                     |            |            |            |
| Surr 2-Fluorobiphenyl                                           | Surr Rec % | no   |              | 91                  | 90         |            |            |
| Surr 4-Terphenyl-d14                                            | Surr Rec % | no   |              | 94                  | 93         |            |            |
| Surr 2-Methylnaphthalene-D10                                    | Surr Rec % | no   |              | 89                  | 87         |            |            |
| Surr Fluoranthene-D10                                           | Surr Rec % | no   |              | 95                  | 92         |            |            |
| THMs (VOC)                                                      |            |      |              |                     |            |            |            |
| Bromodichloromethane                                            | µg/g       | 0.05 | 1.9          |                     |            | < 0.05     | < 0.05     |
| Bromoform                                                       | µg/g       | 0.05 | 0.26         |                     |            | < 0.05     | < 0.05     |
| Dibromochloromethane                                            | µg/g       | 0.05 | 2.9          |                     |            | < 0.05     | < 0.05     |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

| MATRIX: SOIL                                                     |            |      | Sample Number | 14         | 15         | 16         | 17         |  |
|------------------------------------------------------------------|------------|------|---------------|------------|------------|------------|------------|--|
|                                                                  |            |      | Sample Name   | BH2 SS3    | DUP-1-PAH  | BH2 SS9    | DUP-1-VOC  |  |
| .1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UND | JEFINED    |      | Sample Matrix | Soil       | Soil       | Soil       | Soil       |  |
|                                                                  |            |      | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |  |
| Parameter                                                        | Units      | RL   | L1            | Result     | Result     | Result     | Result     |  |
| VOC Surrogates                                                   |            |      |               |            |            |            |            |  |
| Surr 1,2-Dichloroethane-d4                                       | Surr Rec % | no   |               |            |            | 98         | 99         |  |
| Surr 4-Bromofluorobenzene                                        | Surr Rec % | no   |               |            |            | 90         | 89         |  |
| Surr 2-Bromo-1-Chloropropane                                     | Surr Rec % | no   |               |            |            | 77         | 77         |  |
| VOCs                                                             |            |      |               |            |            |            |            |  |
| Acetone                                                          | µg/g       | 0.5  | 28            |            |            | < 0.5      | < 0.5      |  |
| Bromomethane                                                     | µg/g       | 0.05 | 0.05          |            |            | < 0.05     | < 0.05     |  |
| Carbon tetrachloride                                             | µg/g       | 0.05 | 0.12          |            |            | < 0.05     | < 0.05     |  |
| Chlorobenzene                                                    | µg/g       | 0.05 | 2.7           |            |            | < 0.05     | < 0.05     |  |
| Chloroform                                                       | µg/g       | 0.05 | 0.18          |            |            | < 0.05     | < 0.05     |  |
| 1,2-Dichlorobenzene                                              | µg/g       | 0.05 | 1.7           |            |            | < 0.05     | < 0.05     |  |
| 1,3-Dichlorobenzene                                              | µg/g       | 0.05 | 6             |            |            | < 0.05     | < 0.05     |  |
| 1,4-Dichlorobenzene                                              | µg/g       | 0.05 | 0.097         |            |            | < 0.05     | < 0.05     |  |
| Dichlorodifluoromethane                                          | µg/g       | 0.05 | 25            |            |            | < 0.05     | < 0.05     |  |
| 1,1-Dichloroethane                                               | µg/g       | 0.05 | 0.6           |            |            | < 0.05     | < 0.05     |  |
| 1,2-Dichloroethane                                               | hð/ð       | 0.05 | 0.05          |            |            | < 0.05     | < 0.05     |  |
| 1,1-Dichloroethylene                                             | µg/g       | 0.05 | 0.05          |            |            | < 0.05     | < 0.05     |  |
| trans-1,2-Dichloroethylene                                       | µg/g       | 0.05 | 0.75          |            |            | < 0.05     | < 0.05     |  |
| cis-1,2-Dichloroethylene                                         | µg/g       | 0.05 | 2.5           |            |            | < 0.05     | < 0.05     |  |
| 1,2-Dichloropropane                                              | hð\ð       | 0.05 | 0.085         |            |            | < 0.05     | < 0.05     |  |
| cis-1,3-dichloropropene                                          | µg/g       | 0.03 |               |            |            | < 0.03     | < 0.03     |  |
| trans-1,3-dichloropropene                                        | hð\ð       | 0.03 |               |            |            | < 0.03     | < 0.03     |  |
| 1,3-dichloropropene (total)                                      | µg/g       | 0.05 | 0.081         |            |            | < 0.05     | < 0.05     |  |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering ON

Project Manager: Vivi Tran

|                                                                |          |      |       |               |            |            | 10         | -          |
|----------------------------------------------------------------|----------|------|-------|---------------|------------|------------|------------|------------|
| MATRIX: SOIL                                                   |          |      | 5     | Sample Number | 14         | 15         | 16         | 17         |
|                                                                |          |      |       | Sample Name   | BH2 SS3    | DUP-1-PAH  | BH2 SS9    | DUP-1-VOC  |
| 1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UN | NDEFINED |      |       | Sample Matrix | Soil       | Soil       | Soil       | Soil       |
|                                                                |          |      |       | Sample Date   | 14/11/2022 | 14/11/2022 | 14/11/2022 | 14/11/2022 |
| Parameter                                                      | Units    | RL   | L1    |               | Result     | Result     | Result     | Result     |
| OCs (continued)                                                |          |      |       |               |            |            |            |            |
| Ethylenedibromide                                              | µg/g     | 0.05 | 0.05  |               |            |            | < 0.05     | < 0.05     |
| n-Hexane                                                       | µg/g     | 0.05 | 34    |               |            |            | < 0.05     | < 0.05     |
| Methyl ethyl ketone                                            | hð/ð     | 0.5  | 44    |               |            |            | < 0.5      | < 0.5      |
| Methyl isobutyl ketone                                         | hð/ð     | 0.5  | 4.3   |               |            |            | < 0.5      | < 0.5      |
| Methyl-t-butyl Ether                                           | hð\ð     | 0.05 | 1.4   |               |            |            | < 0.05     | < 0.05     |
| Methylene Chloride                                             | µg/g     | 0.05 | 0.96  |               |            |            | < 0.05     | < 0.05     |
| Styrene                                                        | µg/g     | 0.05 | 2.2   |               |            |            | < 0.05     | < 0.05     |
| Tetrachloroethylene                                            | hð/ð     | 0.05 | 2.3   |               |            |            | < 0.05     | < 0.05     |
| 1,1,1,2-Tetrachloroethane                                      | hð/ð     | 0.05 | 0.05  |               |            |            | < 0.05     | < 0.05     |
| 1,1,2,2-Tetrachloroethane                                      | µg/g     | 0.05 | 0.05  |               |            |            | < 0.05     | < 0.05     |
| 1,1,1-Trichloroethane                                          | hð/ð     | 0.05 | 3.4   |               |            |            | < 0.05     | < 0.05     |
| 1,1,2-Trichloroethane                                          | hð/ð     | 0.05 | 0.05  |               |            |            | < 0.05     | < 0.05     |
| Trichloroethylene                                              | µg/g     | 0.05 | 0.52  |               |            |            | < 0.05     | < 0.05     |
| Trichlorofluoromethane                                         | hð/ð     | 0.05 | 5.8   |               |            |            | < 0.05     | < 0.05     |
| Vinyl Chloride                                                 | hð/ð     | 0.02 | 0.022 |               |            |            | < 0.02     | < 0.02     |



### EXCEEDANCE SUMMARY

|                         |                      |         |        | REG153 / SOIL /     |
|-------------------------|----------------------|---------|--------|---------------------|
|                         |                      |         |        | FINE - TABLE 2 -    |
|                         |                      |         |        | Residential/Parklan |
|                         |                      |         |        | d - UNDEFINED       |
| Parameter               | Method               | Units   | Result | L1                  |
| 13 SS1                  |                      |         |        |                     |
| Conductivity            | EPA 6010/SM 2510     | mS/cm   | 1.0    | 0.7                 |
| Sodium Adsorption Ratio | MOE 4696e01/EPA 6010 | No unit | 7.1    | 5                   |
| H3 SS3                  |                      |         |        |                     |
| Sodium Adsorption Ratio | MOE 4696e01/EPA 6010 | No unit | 5.1    | 5                   |
| IP-1-M&I                |                      |         |        |                     |
| Sodium Adsorption Ratio | MOE 4696e01/EPA 6010 | No unit | 5.3    | 5                   |
| 12 SS1                  |                      |         |        |                     |
| Sodium Adsorption Ratio | MOE 4696e01/EPA 6010 | No unit | 5.3    | 5                   |



### Conductivity

# Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

| Parameter    | QC batch      | Units | RL    | Method | Dup | olicate | LC              | S/Spike Blank | S/Spike Blank<br>Recovery Limits<br>(%) |     | Matrix Spike / Ref. |      |  |
|--------------|---------------|-------|-------|--------|-----|---------|-----------------|---------------|-----------------------------------------|-----|---------------------|------|--|
|              | Reference     |       |       | Blank  | RPD | AC      | Spike           |               |                                         |     | Recovery Limits (%) |      |  |
|              |               |       |       |        |     | (%)     | Recovery<br>(%) | Low           | High                                    | (%) | Low                 | High |  |
| Conductivity | EWL0477-NOV22 | mS/cm | 0.002 | <0.002 | 0   | 10      | 100             | 90            | 110                                     | NA  |                     |      |  |

# Cyanide by SFA

## Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

| Parameter    | QC batch      | Units | RL   | Method | Dup | Duplicate LCS |                 | S/Spike Blank          |      | Matrix Spike / Ref. |                        |      |
|--------------|---------------|-------|------|--------|-----|---------------|-----------------|------------------------|------|---------------------|------------------------|------|
|              | Reference     |       |      | Blank  | RPD | AC            | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery   | Recovery Limits<br>(%) |      |
|              |               |       |      |        |     | (%)           | Recovery<br>(%) | Low                    | High | (%)                 | Low                    | High |
| Free Cyanide | SKA5080-NOV22 | hð\ð  | 0.05 | <0.05  | ND  | 20            | 95              | 80                     | 120  | 107                 | 75                     | 125  |

# Hexavalent Chromium by SFA

### Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVISKA-LAK-AN-012

| Parameter   | QC batch      | Units | RL  | Method | Dup | olicate | LC              | S/Spike Blank          |      | Matrix Spike / Ref. |                     |      |
|-------------|---------------|-------|-----|--------|-----|---------|-----------------|------------------------|------|---------------------|---------------------|------|
|             | Reference     |       |     | Blank  | RPD | AC      | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery   | Recovery Limits (%) |      |
|             |               |       |     |        |     | (%)     | Recovery<br>(%) | Low                    | High | (%)                 | Low                 | High |
| Chromium VI | SKA5077-NOV22 | ug/g  | 0.2 | <0.2   | ND  | 20      | 94              | 80                     | 120  | NV                  | 75                  | 125  |



### Mercury by CVAAS

# Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

| Parameter | QC batch      | Units | RL   | Method | Dup | olicate | LC              | S/Spike Blank          | S/Spike Blank |                   | Matrix Spike / Ref.    |      |  |
|-----------|---------------|-------|------|--------|-----|---------|-----------------|------------------------|---------------|-------------------|------------------------|------|--|
|           | Reference     |       |      | Blank  | RPD | AC      | Spike           | Recovery Limits<br>(%) |               | Spike<br>Recovery | Recovery Limits<br>(%) |      |  |
|           |               |       |      |        |     | (%)     | Recovery<br>(%) | Low                    | High          | (%)               | Low                    | High |  |
| Mercury   | EMS0178-NOV22 | ug/g  | 0.05 | <0.05  | ND  | 20      | 100             | 80                     | 120           | 97                | 70                     | 130  |  |

# Metals in aqueous samples - ICP-OES

## Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

| Parameter     | QC batch      | Units | RL  | Method |     | olicate | LC              | S/Spike Blank |                 | Matrix Spike / Ref. |               |                 |
|---------------|---------------|-------|-----|--------|-----|---------|-----------------|---------------|-----------------|---------------------|---------------|-----------------|
|               | Reference     |       |     | Blank  | RPD | AC      | Spike           | Recove<br>(%  | ry Limits<br>%) | Spike<br>Recovery   | Recover<br>(9 | ry Limits<br>%) |
|               |               |       |     |        |     | (%)     | Recovery<br>(%) | Low           | High            | (%)                 | Low           | High            |
| SAR Calcium   | ESG0052-NOV22 | mg/L  | 0.2 | <0.09  | 2   | 20      | 96              | 80            | 120             | 92                  | 70            | 130             |
| SAR Magnesium | ESG0052-NOV22 | mg/L  | 0.3 | <0.02  | 12  | 20      | 96              | 80            | 120             | 92                  | 70            | 130             |
| SAR Sodium    | ESG0052-NOV22 | mg/L  | 0.1 | <0.15  | 0   | 20      | 91              | 80            | 120             | 76                  | 70            | 130             |



# Metals in Soil - Aqua-regia/ICP-MS

# Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

| Parameter  | QC batch      | Units | RL    | Method | Dup | icate     | LC                | S/Spike Blank |      | Ma                | trix Spike / Ref |                 |
|------------|---------------|-------|-------|--------|-----|-----------|-------------------|---------------|------|-------------------|------------------|-----------------|
|            | Reference     |       |       | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recover       |      | Spike<br>Recovery | Recover<br>(9    | ry Limits<br>%) |
|            |               |       |       |        |     | (%)       | (%)               | Low           | High | (%)               | Low              | High            |
| Silver     | EMS0178-NOV22 | ug/g  | 0.05  | <0.05  | ND  | 20        | NV                | 70            | 130  | ND                | 70               | 130             |
| Arsenic    | EMS0178-NOV22 | µg/g  | 0.5   | <0.5   | 3   | 20        | 99                | 70            | 130  | 107               | 70               | 130             |
| Barium     | EMS0178-NOV22 | ug/g  | 0.1   | <0.1   | 3   | 20        | 101               | 70            | 130  | 116               | 70               | 130             |
| Beryllium  | EMS0178-NOV22 | µg/g  | 0.02  | <0.02  | 14  | 20        | 95                | 70            | 130  | 92                | 70               | 130             |
| Boron      | EMS0178-NOV22 | µg/g  | 1     | <1     | 15  | 20        | 92                | 70            | 130  | 87                | 70               | 130             |
| Cadmium    | EMS0178-NOV22 | ug/g  | 0.05  | <0.05  | ND  | 20        | 101               | 70            | 130  | 104               | 70               | 130             |
| Cobalt     | EMS0178-NOV22 | µg/g  | 0.01  | <0.01  | 2   | 20        | 97                | 70            | 130  | 101               | 70               | 130             |
| Chromium   | EMS0178-NOV22 | µg/g  | 0.5   | <0.5   | 5   | 20        | 95                | 70            | 130  | 94                | 70               | 130             |
| Copper     | EMS0178-NOV22 | µg/g  | 0.1   | <0.1   | 3   | 20        | 94                | 70            | 130  | 106               | 70               | 130             |
| Molybdenum | EMS0178-NOV22 | µg/g  | 0.1   | <0.1   | 15  | 20        | 95                | 70            | 130  | 95                | 70               | 130             |
| Nickel     | EMS0178-NOV22 | ug/g  | 0.5   | <0.5   | 4   | 20        | 98                | 70            | 130  | 101               | 70               | 130             |
| Lead       | EMS0178-NOV22 | µg/g  | 0.1   | <0.1   | 1   | 20        | 106               | 70            | 130  | 119               | 70               | 130             |
| Antimony   | EMS0178-NOV22 | µg/g  | 0.8   | <0.8   | ND  | 20        | 106               | 70            | 130  | 97                | 70               | 130             |
| Selenium   | EMS0178-NOV22 | µg/g  | 0.7   | <0.7   | ND  | 20        | 101               | 70            | 130  | 108               | 70               | 130             |
| Thallium   | EMS0178-NOV22 | µg/g  | 0.02  | <0.02  | 2   | 20        | NV                | 70            | 130  | 118               | 70               | 130             |
| Uranium    | EMS0178-NOV22 | µg/g  | 0.002 | <0.002 | 5   | 20        | 94                | 70            | 130  | NV                | 70               | 130             |
| Vanadium   | EMS0178-NOV22 | µg/g  | 3     | <3     | 4   | 20        | 93                | 70            | 130  | 95                | 70               | 130             |
| Zinc       | EMS0178-NOV22 | hð\ð  | 0.7   | <0.7   | 1   | 20        | 97                | 70            | 130  | 95                | 70               | 130             |



## Petroleum Hydrocarbons (F1)

# Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

| Parameter   | QC batch      | Units | RL | Method | Dup | olicate | LC              | S/Spike Blank |                  | M                 | latrix Spike / Ref | :               |
|-------------|---------------|-------|----|--------|-----|---------|-----------------|---------------|------------------|-------------------|--------------------|-----------------|
|             | Reference     |       |    | Blank  | RPD | AC      | Spike           |               | əry Limits<br>%) | Spike<br>Recovery | Recove             | ry Limits<br>6) |
|             |               |       |    |        |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low                | High            |
| F1 (C6-C10) | GCM0369-NOV22 | hð\ð  | 10 | <10    | ND  | 30      | 92              | 80            | 120              | 95                | 60                 | 140             |

# Petroleum Hydrocarbons (F2-F4)

# Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

| Parameter    | QC batch      | Units | RL | Method | Dup | olicate | LC              | S/Spike Blank |                 | м                 | atrix Spike / Ref |      |
|--------------|---------------|-------|----|--------|-----|---------|-----------------|---------------|-----------------|-------------------|-------------------|------|
|              | Reference     |       |    | Blank  | RPD | AC      | Spike           | Recove        | ry Limits<br>%) | Spike<br>Recovery | Recover<br>(%     | -    |
|              |               |       |    |        |     | (%)     | Recovery<br>(%) | Low           | High            | (%)               | Low               | High |
| F2 (C10-C16) | GCM0375-NOV22 | hð\ð  | 10 | <10    | ND  | 30      | 107             | 80            | 120             | 106               | 60                | 140  |
| F3 (C16-C34) | GCM0375-NOV22 | µg/g  | 50 | <50    | ND  | 30      | 107             | 80            | 120             | 106               | 60                | 140  |
| F4 (C34-C50) | GCM0375-NOV22 | µg/g  | 50 | <50    | ND  | 30      | 107             | 80            | 120             | 106               | 60                | 140  |



## Petroleum Hydrocarbons (F4G)

# Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

| Parameter    | QC batch      | Units | RL  | Method | Duj | olicate | LC              | S/Spike Blank |                  | м                 | atrix Spike / Re |                 |
|--------------|---------------|-------|-----|--------|-----|---------|-----------------|---------------|------------------|-------------------|------------------|-----------------|
|              | Reference     |       |     | Blank  | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery |                  | ry Limits<br>%) |
|              |               |       |     |        |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low              | High            |
| F4G-sg (GHH) | GCM0424-NOV22 | µg/g  | 200 | <200   | NA  | 30      | 102             | 80            | 120              | NA                | 60               | 140             |

# pН

## Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

| Parameter | QC batch      | Units    | RL   | Method | Duj | olicate | LC              | S/Spike Blank |                   | м                 | atrix Spike / Ref | :               |
|-----------|---------------|----------|------|--------|-----|---------|-----------------|---------------|-------------------|-------------------|-------------------|-----------------|
|           | Reference     |          |      | Blank  | RPD | AC      | Spike           |               | ery Limits<br>(%) | Spike<br>Recovery | Recove            | ry Limits<br>6) |
|           |               |          |      |        |     | (%)     | Recovery<br>(%) | Low           | High              | (%)               | Low               | High            |
| рН        | ARD0087-NOV22 | pH Units | 0.05 |        | 0   | 20      | 100             | 80            | 120               |                   |                   |                 |



# **Semi-Volatile Organics**

# Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

| Parameter              | QC batch      | Units | RL   | Method | Dup | licate    | LCS               | 6/Spike Blank |      | Ma                | atrix Spike / Re | f.               |
|------------------------|---------------|-------|------|--------|-----|-----------|-------------------|---------------|------|-------------------|------------------|------------------|
|                        | Reference     |       |      | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recover<br>(% | -    | Spike<br>Recovery |                  | ery Limits<br>%) |
|                        |               |       |      |        |     | (70)      | (%)               | Low           | High | (%)               | Low              | High             |
| 1-Methylnaphthalene    | GCM0367-NOV22 | μg/g  | 0.05 | < 0.05 | ND  | 40        | 93                | 50            | 140  | 88                | 50               | 140              |
| 2-Methylnaphthalene    | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 90                | 50            | 140  | 85                | 50               | 140              |
| Acenaphthene           | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 94                | 50            | 140  | 87                | 50               | 140              |
| Acenaphthylene         | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 90                | 50            | 140  | 84                | 50               | 140              |
| Anthracene             | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 87                | 50            | 140  | 80                | 50               | 140              |
| Benzo(a)anthracene     | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 93                | 50            | 140  | 90                | 50               | 140              |
| Benzo(a)pyrene         | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 85                | 50            | 140  | 80                | 50               | 140              |
| Benzo(b+j)fluoranthene | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 92                | 50            | 140  | 80                | 50               | 140              |
| Benzo(ghi)perylene     | GCM0367-NOV22 | µg/g  | 0.1  | < 0.1  | ND  | 40        | 90                | 50            | 140  | 80                | 50               | 140              |
| Benzo(k)fluoranthene   | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 85                | 50            | 140  | 78                | 50               | 140              |
| Chrysene               | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 90                | 50            | 140  | 88                | 50               | 140              |
| Dibenzo(a,h)anthracene | GCM0367-NOV22 | µg/g  | 0.06 | < 0.06 | ND  | 40        | 78                | 50            | 140  | 86                | 50               | 140              |
| Fluoranthene           | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 84                | 50            | 140  | 84                | 50               | 140              |
| Fluorene               | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 91                | 50            | 140  | 87                | 50               | 140              |
| Indeno(1,2,3-cd)pyrene | GCM0367-NOV22 | µg/g  | 0.1  | < 0.1  | ND  | 40        | 77                | 50            | 140  | 76                | 50               | 140              |
| Naphthalene            | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 93                | 50            | 140  | 83                | 50               | 140              |
| Phenanthrene           | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 90                | 50            | 140  | 82                | 50               | 140              |
| Pyrene                 | GCM0367-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 40        | 95                | 50            | 140  | 84                | 50               | 140              |



# Volatile Organics

# Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

| Parameter                 | QC batch      | Units | RL   | Method | Dup | licate    | LC                | S/Spike Blank |      | Ma                | atrix Spike / Re | i.               |
|---------------------------|---------------|-------|------|--------|-----|-----------|-------------------|---------------|------|-------------------|------------------|------------------|
|                           | Reference     |       |      | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recover<br>(% | -    | Spike<br>Recovery |                  | ery Limits<br>%) |
|                           |               |       |      |        |     | (%)       | (%)               | Low           | High | (%)               | Low              | High             |
| 1,1,1,2-Tetrachloroethane | GCM0368-NOV22 | hð\ð  | 0.05 | < 0.05 | ND  | 50        | 101               | 60            | 130  | 106               | 50               | 140              |
| 1,1,1-Trichloroethane     | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 102               | 60            | 130  | 82                | 50               | 140              |
| 1,1,2,2-Tetrachloroethane | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 109               | 50               | 140              |
| 1,1,2-Trichloroethane     | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 98                | 60            | 130  | 102               | 50               | 140              |
| 1,1-Dichloroethane        | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 77                | 50               | 140              |
| 1,1-Dichloroethylene      | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 70                | 50               | 140              |
| 1,2-Dichlorobenzene       | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 102               | 50               | 140              |
| 1,2-Dichloroethane        | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 98                | 60            | 130  | 82                | 50               | 140              |
| 1,2-Dichloropropane       | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 98                | 60            | 130  | 96                | 50               | 140              |
| 1,3-Dichlorobenzene       | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 101               | 50               | 140              |
| 1,4-Dichlorobenzene       | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 98                | 60            | 130  | 99                | 50               | 140              |
| Acetone                   | GCM0368-NOV22 | µg/g  | 0.5  | < 0.5  | ND  | 50        | 91                | 50            | 140  | 73                | 50               | 140              |
| Benzene                   | GCM0368-NOV22 | µg/g  | 0.02 | < 0.02 | ND  | 50        | 100               | 60            | 130  | 83                | 50               | 140              |
| Bromodichloromethane      | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 96                | 50               | 140              |
| Bromoform                 | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 93                | 60            | 130  | 109               | 50               | 140              |
| Bromomethane              | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 93                | 50            | 140  | 69                | 50               | 140              |
| Carbon tetrachloride      | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 101               | 60            | 130  | 83                | 50               | 140              |
| Chlorobenzene             | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 97                | 60            | 130  | 100               | 50               | 140              |
| Chloroform                | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 79                | 50               | 140              |
| cis-1,2-Dichloroethylene  | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 79                | 50               | 140              |



# Volatile Organics (continued)

# Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

| Parameter                  | QC batch      | Units | RL   | Method | Dup | licate    | LC                | S/Spike Blank |      | Ma                | atrix Spike / Ref | <i>i.</i>       |
|----------------------------|---------------|-------|------|--------|-----|-----------|-------------------|---------------|------|-------------------|-------------------|-----------------|
|                            | Reference     |       |      | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recover<br>(% | -    | Spike<br>Recovery |                   | ry Limits<br>%) |
|                            |               |       |      |        |     | (70)      | (%)               | Low           | High | (%)               | Low               | High            |
| cis-1,3-dichloropropene    | GCM0368-NOV22 | μg/g  | 0.03 | < 0.03 | ND  | 50        | 104               | 60            | 130  | 93                | 50                | 140             |
| Dibromochloromethane       | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 103               | 50                | 140             |
| Dichlorodifluoromethane    | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 84                | 50            | 140  | 54                | 50                | 140             |
| Ethylbenzene               | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 94                | 50                | 140             |
| Ethylenedibromide          | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 101               | 60            | 130  | 101               | 50                | 140             |
| n-Hexane                   | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 91                | 60            | 130  | 24                | 50                | 140             |
| m/p-xylene                 | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 86                | 50                | 140             |
| Methyl ethyl ketone        | GCM0368-NOV22 | µg/g  | 0.5  | < 0.5  | ND  | 50        | 94                | 50            | 140  | 84                | 50                | 140             |
| Methyl isobutyl ketone     | GCM0368-NOV22 | µg/g  | 0.5  | < 0.5  | ND  | 50        | 100               | 50            | 140  | 108               | 50                | 140             |
| Methyl-t-butyl Ether       | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 86                | 50                | 140             |
| Methylene Chloride         | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 97                | 60            | 130  | 79                | 50                | 140             |
| o-xylene                   | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 93                | 50                | 140             |
| Styrene                    | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 101               | 60            | 130  | 103               | 50                | 140             |
| Tetrachloroethylene        | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 89                | 50                | 140             |
| Toluene                    | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 90                | 50                | 140             |
| trans-1,2-Dichloroethylene | GCM0368-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 98                | 60            | 130  | 78                | 50                | 140             |
| trans-1,3-dichloropropene  | GCM0368-NOV22 | µg/g  | 0.03 | < 0.03 | ND  | 50        | 103               | 60            | 130  | 93                | 50                | 140             |
| Trichloroethylene          | GCM0368-NOV22 | hð/ð  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 94                | 50                | 140             |
| Trichlorofluoromethane     | GCM0368-NOV22 | hð/ð  | 0.05 | < 0.05 | ND  | 50        | 95                | 50            | 140  | 63                | 50                | 140             |
| Vinyl Chloride             | GCM0368-NOV22 | µg/g  | 0.02 | < 0.02 | ND  | 50        | 92                | 50            | 140  | 72                | 50                | 140             |



#### Water Soluble Boron

#### Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

| Parameter           | QC batch      | Units | RL  | Method | Dup | olicate | LC              | S/Spike Blank |                  | M                 | latrix Spike / Ref | r.              |
|---------------------|---------------|-------|-----|--------|-----|---------|-----------------|---------------|------------------|-------------------|--------------------|-----------------|
|                     | Reference     |       |     | Blank  | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery | Recove             | ry Limits<br>%) |
|                     |               |       |     |        |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low                | High            |
| Water Soluble Boron | ESG0051-NOV22 | hð\ð  | 0.5 | <0.5   | ND  | 20      | 109             | 80            | 120              | 100               | 70                 | 130             |

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

### LEGEND

### **FOOTNOTES**

NSS Insufficient sample for analysis.

- RL Reporting Limit.
  - Reporting limit raised.
  - ↓ Reporting limit lowered.
  - NA The sample was not analysed for this analyte
  - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yellow & White Copy - SGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                  | 1 1 1      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:     |            |                       | -                      | Now I                 | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             | Y                         |                            | Signature:                |                                  | All a state            | 1000                              |                  | by (NAME        | Relinquished                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------------------|------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|----------------------------|---------------------------|----------------------------------|------------------------|-----------------------------------|------------------|-----------------|-------------------------------|
| <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Image: Information of the contrast of a metabolish of the contrast of the contr                                    | ink Copy - Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | (mm/dd/y                         | 26         | 5             | 11 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:     |            |                       | 1                      | 1110                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                          | S                         |                            | Signature:                |                                  | 3                      | - 55 V -                          | New              | 12              | ampled By                     |
| Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Margine in Exponents of Levels of Product Structure Contract Structure Contra                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a P       | 1          |                       |                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | )                         |                            | The second                |                                  |                        | <u>su</u>                         | cial Instruction | s/Comments/Spe  | bservation                    |
| Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and per of Concentral PL (under Concentra                                    | The Party of the P |                                                                                                                 |                                  |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0         | ×          | ×                     |                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                            | 3                         |                                  |                        | 5                                 | 1- VO            | Dup-            | 12                            |
| Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and ref to Consent 91, under a Volume 10, or 10, under a Volume 10, under a Volume 10, or 10, under a Volume 10, or 10, under a Volume 10, under a Volu                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  | 8          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | ×          | ×                     |                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 110                       |                            | 6                         | - 1                              | 1                      |                                   | 153              | BHA             | 11                            |
| Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | amplet the Conserved of Lange And Park Process and Park Park Process and Park Process and Park Park Process and                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. CA 10  |            |                       |                        | ×                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                           |                            | -                         |                                  |                        |                                   | 1-PAH            | Dug-            | 10                            |
| Answer Revenue (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 14 A                             |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3         |            |                       |                        | 7                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                           |                           | No. of                     | دو                        |                                  | ALC: NOTE OF           | U                                 | 55               | BHA             | 9                             |
| Answer Revenue Lawyer       The Difference integration of the system of th                                                                                           | amplet 18 Conserved Conserved on the decay of the de                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | ×          | +                     | 1218                   | ×                     | No.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 242                                         |                           | 140                        | σ                         |                                  | 1                      |                                   | 55               | BHJ             | 8                             |
| Market Reference 1.4.       Consume 1.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and rt 16 Constant St. Landon ON Nor of Normal Constant St. Landon ON Normal St. La                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  | 1          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                       | -                      | 1.1                   | -Xill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ブ                                           | a -                       |                            | <u> </u>                  |                                  |                        |                                   | 155              | BHa             | 7                             |
| Instance         Environment         Control from the second on the biological control from the second on the second on the biological control from the second on the biological control from the second on the biological control from the second on the second on the biological control from the second on the secon                                                                                            | Andrease:       NUNCE INCOMMUNITY       Outline Control of a first section of                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 m                                                                                                            |                                  |            |               | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            |                       |                        |                       | the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                           |                           |                            | -                         |                                  |                        |                                   | NAT              | DUP-1-          | 6                             |
| Instance Environment         Constraint         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | amplet 150 Compared 511, Livedu COV OCC 11 Frame 2000 Fail: 10 and 2000                                    | 6 80 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                                  |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | ×          | ×                     |                        | Y                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 1                         | 1                          | 6                         |                                  | 4                      | 4                                 | 85 F             | T               | 5                             |
| Instance II. Provident 1: Marked III. Linking Columbus IIII. Linking Columbus III. Linking Columbus IIII. Linking Columa III. Linking Columbus IIII. Linking Columbu                                                                                                           | Image: 100 Concernent Cut Unit Cut On Unit and Cut On The ETF Section - Unit Unit Cut On Unit Section - Unit Cut On Unit Cut                                     | States - States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 1                                |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            | ×                     |                        | ×                     | Children of Childr |                                             | 1                         |                            | 1                         | 1                                | -                      | a.                                | 4 53             | T               | 4                             |
| Insurance & Environment       Concentration       Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and pert 162 Concession St. Lakebook Over US Sectors The West Sectors The Wes                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  | 計画         | 6             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | TRO I      |                       |                        |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                           |                           |                            | 1                         |                                  |                        |                                   | 5                | Ŧ               | ω                             |
| Busines & Inversion         Conception Pack United (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | average red Concession St. Leveled, O. V. C. 200 Proc. The Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 19                               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | ×          | ×                     |                        | 7                     | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 201 (C                                      |                           |                            | 6                         |                                  |                        | Ser. 1                            |                  | H               | 2                             |
| Image as Report Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | available 198 Concession SL, Lawled, CH, DH Preix, Trade adgle Tex, Tex, Tex, Tex, Tex, Tex, Tex, Tex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |            | ŝ,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            | 12.00                 |                        | 1.1.1.2.1             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                           |                           | 0                          | 5                         | 1.0                              | 111/2                  | A at the                          | 155              | T               |                               |
| Invariant & Environment - Langing Fills Concersion SL, Landeid, ON KM, Life Provent, See 2000 fee: Concerts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | aselget 156 Concession St., Laked, OKU, 200 Proc. 706-652-000 Y Corr 706-652-                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                                                                                               | Specify pkg:<br>Water Characteri |            | - 1999.<br>   | and the second se | BTEX only |            |                       |                        |                       | ICP Metals only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inci CrVI, CN,Hg pH,(B(HW<br>(CI, Na-water) | Field Filtered (          |                            | # OF<br>BÓTTLES           | TIME                             |                        | Z                                 | NTIFICATIO       | SAMPLE IDEI     |                               |
| Induities & Environment - Landing In 156 Concession SL, Ladenida, ON K0L 24P Preve XD 565 2000 Kerv x0 segumentower       Image: I                                                                                           | adaptat 185 Concession St. Laketo, NR. 2016 Prover. To 6422-000 yr Erik 642-000                                    | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                               |                                  |            | 16            | othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |                       |                        |                       | y Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS),E(                                      |                           |                            |                           | NO                               |                        |                                   |                  | RECORD OF       |                               |
| Indurted & Environment Landard: 186 Concession SL, Landellad, CM VOC, 2010 Prover, Tors 526-526 Kirk: vox segs confrontroment       Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | averaged:       160 Concession St. Lakeflood. O KUL 240 Proce. 756-682.000 Par. 756-6                                             | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | letals                                                                                                          |                                  |            |               | R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |            |                       | A                      |                       | As,Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C,SAR-                                      |                           |                            | e note                    |                                  | ODWS Not R             | 350m3                             |                  | <350            | Soil Vo                       |
| Insuring & Environment - Langlight 785 Concession St. Landeride, O. WICL Defense. TO Se28-3636 Work, www.sps.cpm/environment       Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | averaget 186 Concession St. Laker LON MC. 2010 For Concession St. Laker Loss 2000 Fax: To Se 626.365 Web: www.sts. Scrime Normanian       Page       of         Annoted 67 Concession St. Laker Web (signature):       Laker Web (signature): <td< td=""><td></td><td>the second se</td><td>'kg</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>roclor</td><td></td><td></td><td></td><td></td><td>Sanitary<br/>Storm</td><td></td><td>BL: U</td><td>Reg 347/558</td><td>Texture:<br/>Coarse<br/>Medium/Fine</td><td>e</td><td><b>-</b><br/>000</td><td>Table 1<br/>Table 2<br/>Table 3</td></td<>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second se | 'kg                              |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | -          |                       | roclor                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           | Sanitary<br>Storm          |                           | BL: U                            | Reg 347/558            | Texture:<br>Coarse<br>Medium/Fine | e                | <b>-</b><br>000 | Table 1<br>Table 2<br>Table 3 |
| Industrie & Environment - Landiged : 180 Concession St. Lakefield, CNV, NVE 288 Prome: 510 562:2000 Fax: 106:72:08:01       Page       of         Industrie & MVV 16 /0/L       (mmday)       Lakefield, CNV, NVE 288 Prome: 510 and 2000 Fax: 106:72:08:01       Page       of         Industrie & MVV 16 /0/L       (mmday)       Lakefield, CNV, NVE 288 Prome: 510 and 2000 Fax: 106:72:08:01       Tage       of       Page       of         Industrie & MVV 16 /0/L       (mmday)       Lakefield, CNV, NVE 288 Prome: 510 and 2000 Fax: 106:72:08:01       Tage       Ocioing Agent Present: Yes       Pole: 106:92:000 Fax: 106:72:08:01       Pole: 106:92:000 Fax: 106:92:0                                                                                                                                                                                                                                                                                                                                                                               | average (195 Concession St. Lakefield, ON KU 21/0 Prover 519-652-0365 units, with a specific provided of the status of the status of provided of the status of th                                    | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | e specify)                       | er (please | Oth           | Pest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15        |            | 2                     |                        | VO                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.100                                       |                           |                            | ew                        |                                  | Other Regulati         | leg 406/19                        | 0.R              | 153/04          | 🗙 O.Reg                       |
| Invarian & Environment - Lakefagt: 135 Concession SL. Lakefagt: NGL 249 Prove: 705-652-2005 Meb: www.sgl.cgm/involution       Page _ of _         Investige:       Investige: 135 Concession SL. Lakefagt: 135 Concessintrater Report SL. Lakefagt: 135 Concession S                                                                                                                              | adepted 195 Concession St., Lakeled, ON KUL 2H0 Fnore. 2705-662-0662 Wete: www.sgs.cm/em/cm/cm/cm/cm/cm/cm/cm/cm/cm/cm/cm/cm/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |            | ED            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | S          | AN                    |                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stands.                                     | Hankel                    | N. S. S. S. S.             |                           |                                  | TIONS                  | GUL                               | 2.51             | 120             | 116354                        |
| Industries & Environment - Lakerglaf: 195 Concession SL, Lakellaci (O, WOL, Zhang, Concerning,                                                                                   | -Lakefielt: 185 Concession SL, Lakefield, ON K0L 2H0 Phone: 705-652-2006 Fax: 105-652-2006 Fax: 105-652-20060 Fax: 105-652-2006 Fax: 105-652-2006 Fax: 105-652-20                                    | BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AN CONSUMPTION                                                                                                  | WATER                            | DRINKING   | E) WAT        | (POT/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DRINKING  |            |                       | , č                    |                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Due                                         | Specify                   |                            |                           |                                  | nail:                  | 100                               | 1                | O               |                               |
| Industries & Environment - Lakefield, 195 Concession SL, Lakefield, ON KUL 210 Phone: 705-652-2000 Fax: 705-652-2000 Fax: 705-652-2000 Fax: 719-672-0361       Page of         Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Lakefeld: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment       Page of         - Undor 657 Concertum Court, London, ON, N6E 288 Phone: 518-651-4500 Fax: 705-652-6365 Web: www.sgs.com/environment       Page of         - Undor 657 Concertum Court, London, ON, N6E 288 Phone: 518-651-4500 Fax: 705-652-6365 Web: www.sgs.com/environment       Page of         - Undor 657 Concertum Court, London, ON, N6E 288 Phone: 518-651-4500 Fax: 719-672-0361       Page of         - Undor 705 Scale       - Coling Agent Present: Yes       Page of         - Undor 958 Court Information       Coling Agent Present: Yes       Page of         - INVOICE INFORMATION       Coloring Agent Present: Yes       Page of         - Contact:       - Noice information       Cuclation #:       Page of         - Contact:       - One information       Project #:       A - A 79       - A O 3       IURNARCOUND TIME (TAT) REQUIRED       K - A 4 0 21 2 - N         - Address:       - Noice if #:       - A - A 79       - A O 3       TURNARCOUND TIME (TAT) REQUIRED       K - A 4 0 21 2 - N         - State of the statute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | SION                             |            | s 3<br>RIOR T | EDa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Day     | S          | S T                   | ITY Ap                 | arges<br>FEAS         | RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TAT<br>SE CO                                | PLEAS                     |                            |                           |                                  | one:                   | P                                 |                  |                 | Phone:                        |
| Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON Koll. 2H0 Phone: 705-652-6365 Web: www.sgs.com/environment       Page       of         -Index 657 Conceptium Court, London, ON, NGE 258 Phone: 519-652-6365 Web: www.sgs.com/environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Lakefeld: 195 Concession St., Lakefield, ON KOL 210 Phone: 505-652-2000 Fax: 705-652-2000 Fax: 705-672-0301       Page 0:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | polidays & weekends).<br>gins next business day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (exclude statutory<br>weekends: TAT beg                                                                         | ter 6pm or on                    | received a |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                       |                        | -7days)               | TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Regula                                      |                           |                            | Sol as                    |                                  | dress:                 | Ac                                | NO               | onto            | 100                           |
| Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Prone: 705-652-2000 Fax: 705-652-200 Fax: 705-652-650 Fax: 705-650 Fax: 705-650 Fax: 705-650 Fa                                                                                  | - Lakefeld: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment       Page 0f         - Inndoit 657 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment       Page 0f         - Inndoit 657 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment       Page 0f         - Inndoit 657 Conceptum Court, London, ON, NEE 258 Phone: 519-672-0361       Cooling Agent Present: Yes 0       Page 0f         - Inndoity Court State Present: Yes 0       - Inno 0       Cooling Agent Present: Yes 0       Type:       Lake Y 0 21 2 - N         INVOICE INFORMATION       Coultation #:       Ouotation #:       Ouotation #:       P.O. #:       P.O. #:         Project #: 3 - 3 - 1       - 3 - 1       - 3 - 1       - 3 - 1       - 3 - 1       Site Location/ID: 10 - 5       K - 1 - 5 - K - 1 - 5 - K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9. ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pickerm                                                                                                         | Non of the other                 | QUIRED     |               | D TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AROUN     | TURN       | - Contraction         | THE SECOND             | No. Con               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | and a second              |                            | and a second              |                                  | ntact:                 | 0                                 | 20 00            | ف               | Address:                      |
| Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.cgm/environment       Page of 1         Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.cgm/environment       Page of 1         Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.cgm/environment       Page of 1         Industries & Environment - Lakefield: 057 Consertium Court, London, ON, NEE 2S8 Phone: 519-672-4500 Tail Free: 877-648-8000 Fax: f19-672-0361       Page of 1         Industries & Environment - Lakefield: 057 Consertium Court, London, ON, NEE 2S8 Phone: 519-672-4500 Tail Free: 877-648-8000 Fax: f19-672-0361       Page of 1         Industries & Environment - Lakefield: 0100 Seal Inter:       Laboratory Information Free: 877-648-800 Fax: f19-672-0361       Page of 1         Information       Custody Seal Present:       Yes       N       Cooling Agent Present:       Yes       Type:         Laboratory       Information       Invoice InFormation       Cooling Agent Present:       Yes       Type:       LAB LIMS # CA YO 21 2 - N         Counce Information       Invoice InFormation       Outpation #:       Counce Present:       Yes       P.O. #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361 ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361 ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361 ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361 ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361 ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361 ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361 ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361 ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361 ended 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-021 ended 657 Consortium Court, London, N6E 2S8 Phone: 519-672-021 ended 657 Consortium Court, London, N6E 2S8 Phone: 519-672-021 ended 657 Construct, Construct, Construct, Constr          | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3119                                                                                                            | 0                                | ocation/II |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 5.2        |                       | 0                      | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ع                                           | Project                   | 201-15                     |                           |                                  | ſ                      | 0                                 | 12               | VIT             |                               |
| Industries & Environment - Lakefield; 185 Concession St., Lakefield, ON KOL 2H0 Phone; 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment       Page of         -Inndo 657 Consortium Court, London, ON, N6E 2S8 Phone; 519-672-0361       Page of         -Inndo 657 Consortium Court, London, ON, N6E 2S8 Phone; 519-672-6365 Web: www.sgs.com/environment       Page of         -Inndo 657 Consortium Court, London, ON, N6E 2S8 Phone; 519-672-0361       Page of         -Inndo 657 Consortium Court, London, ON, N6E 2S8 Phone; 519-672-0361       Page of         -Inndo 1000       Face of       Latoratory Information Section - Lob use only         -Inndo 101/2       (mm/ddiyy)       Custody Seal Present: Yes       N         - (hr : min)       Custody Seal Intact: Yes       N       Cooling Agent Present: Yes       N       Temperature Upon Recept (°C)       Type:         - (hr : min)       NOTICE INFORMATION       NOTICE INFORMATION       Notice INFORMATION       LAB LIMS #: CA 40212 - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment       02985         Impoor 657 Consortum Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment       Page of of of other         Impoor 657 Consortum Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment       Page of of other         Impoor 657 Consortum Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment       Page of of other         Impoor 657 Consortum Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment       Page of of other         Impoor 657 Consortum Court, London, ON, N6E 2S8 Phone: 519-672-6365 Web: www.sgs.com/environment       Page of of other         Impoor 700 Web 200 Fax: 19-672-0361       Page of of other         Inddiyy)       Custody Seal Present: Yes       No         Cooling Agent Present: Yes       No       Temperature Upon Receipt (°C)         Impoor 700 Web 200 Web                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                  | *          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | (          |                       |                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second                           | Quotati                   |                            | tion)                     |                                  | as                     | recting                           | ビック              |                 | ompany:                       |
| Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>Page<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>Page<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>Page<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>Page<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>Page<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>Page<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>Page<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Fax: 519-672-0361<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-0361<br>- Iondon 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Fax: 519-672-0361<br>- Iondon | - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.cgm/environment<br>- Iondon 657 Consortium Court, London, ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-848-8040 Fax: 519-672-0361<br>- Laboratory Information Section - Laboratory Office Section - Laboratory | N-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #                                                                                                               | LABI                             |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7         | Type       | 23                    | ni o                   | Present:<br>Ipon Rect | C F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Сос                                         |                           | A A A                      | Present: Ye<br>Intact: Ye | tod                              | INV                    |                                   | 1 6 ZUZ          | NU              | Received Da<br>Received Til   |
| - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment<br>- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361 Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment<br>- London: 657 Consortium Court, London, ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-848-8000 Fax: 519-672-0361<br>Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |            |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 4          | CHANG                 | dist                   | tion - L              | ion Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | format                                      | oratory                   | John Lat                   | signature):               | Received By (                    | Campo                  | mare                              | all of the       | Miles           | Received By                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No.U.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                               |                                  |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | ment<br>61 | n/environ<br>9-672-03 | w.sgs.co.<br>0 Fax: 51 | Web: ww<br>-848-800   | 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 Fax: 705<br>2-4500 To                     | 05-652-200<br>)ne: 519-67 | H0 Phone: 7<br>N6E 2S8 Pho | , ON                      | n St., Lakefie<br>rtium Court, I | Concessio<br>657 Consc | vironment - Lakefe                | dustries & Env   | <b>GJ</b>       | C                             |







# CA40233-NOV22 R1

22-279-202, 1095 Kingston Rd, Pickering

Prepared for

Grounded Engineering Inc.



### First Page

| CLIENT DETAILS |                                         | LABORATORY DETAILS |                                           |
|----------------|-----------------------------------------|--------------------|-------------------------------------------|
| Client         | Grounded Engineering Inc.               | Project Specialist | Maarit Wolfe, Hon.B.Sc                    |
|                |                                         | Laboratory         | SGS Canada Inc.                           |
| Address        | 1 Banigan Drive                         | Address            | 185 Concession St., Lakefield ON, K0L 2H0 |
|                | Toronto, Ontario                        |                    |                                           |
|                | M4H1G3. Canada                          |                    |                                           |
| Contact        | Vivi Tran                               | Telephone          | 705-652-2000                              |
| Telephone      | 647-264-7928                            | Facsimile          | 705-652-6365                              |
| Facsimile      |                                         | Email              | Maarit.Wolfe@sgs.com                      |
| Email          | vtran@groundedeng.ca                    | SGS Reference      | CA40233-NOV22                             |
| Project        | 22-279-202, 1095 Kingston Rd, Pickering | Received           | 11/18/2022                                |
| Order Number   |                                         | Approved           | 11/25/2022                                |
| Samples        | Soil (4)                                | Report Number      | CA40233-NOV22 R1                          |
|                |                                         | Date Reported      | 01/11/2024                                |

#### COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 8 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 030000

SIGNATORIES

Maarit Wolfe, Hon.B.Sc

funde



# TABLE OF CONTENTS

| First Page         | 1     |
|--------------------|-------|
| Index              | 2     |
| Results            | 3-8   |
| Exceedance Summary | 9     |
| QC Summary         | 10-18 |
| Legend             | 19    |
| Annexes            | 20    |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

|                                                       |                  |      |               | _          |            |            |            |
|-------------------------------------------------------|------------------|------|---------------|------------|------------|------------|------------|
| MATRIX: SOIL                                          |                  |      | Sample Number | 7          | 8          | 9          | 10         |
|                                                       |                  |      | Sample Name   | BH1 SS2    | BH1 SS4    | BH1 SS1    | BH1 SS10   |
| 1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Park | land - UNDEFINED |      | Sample Matrix | Soil       | Soil       | Soil       | Soil       |
|                                                       |                  |      | Sample Date   | 16/11/2022 | 16/11/2022 | 16/11/2022 | 17/11/2022 |
| Parameter                                             | Units            | RL   | L1            | Result     | Result     | Result     | Result     |
| BTEX                                                  |                  |      |               |            |            |            |            |
| Benzene                                               | hð\ð             | 0.02 | 0.17          |            | < 0.02     |            | < 0.02     |
| Ethylbenzene                                          | hð\ð             | 0.05 | 1.6           |            | < 0.05     |            | < 0.05     |
| Toluene                                               | µg/g             | 0.05 | 6             |            | < 0.05     |            | < 0.05     |
| Xylene (total)                                        | hð\ð             | 0.05 | 25            |            | < 0.05     |            | < 0.05     |
| m/p-xylene                                            | µg/g             | 0.05 |               |            | < 0.05     |            | < 0.05     |
| o-xylene                                              | µg/g             | 0.05 |               |            | < 0.05     |            | < 0.05     |
| Hydrides                                              |                  |      |               |            |            |            |            |
| Antimony                                              | hð\ð             | 0.8  | 7.5           |            | < 0.8      | < 0.8      |            |
| Arsenic                                               | µg/g             | 0.5  | 18            |            | 2.2        | 2.7        |            |
| Selenium                                              | hā\ð             | 0.7  | 2.4           |            | < 0.7      | < 0.7      |            |
| Vetals and Inorganics                                 |                  |      |               |            |            |            |            |
| Moisture Content                                      | %                | no   |               | 14.5       | 11.2       | 18.5       | 15.9       |
| Barium                                                | hð/ð             | 0.1  | 390           |            | 65         | 86         |            |
| Beryllium                                             | µg/g             | 0.02 | 5             |            | 0.28       | 0.45       |            |
| Boron                                                 | µg/g             | 1    | 120           |            | 18         | 17         |            |
| Cadmium                                               | µg/g             | 0.05 | 1.2           |            | 0.13       | 0.11       |            |
| Chromium                                              | hð\ð             | 0.5  | 160           |            | 9.3        | 16         |            |
| Cobalt                                                | hā\ð             | 0.01 | 22            |            | 6.0        | 4.3        |            |
| Copper                                                | hð\ð             | 0.1  | 180           |            | 12         | 13         |            |
| Lead                                                  | hā\ð             | 0.1  | 120           |            | 8.6        | 15         |            |
| Molybdenum                                            | hā\ð             | 0.1  | 6.9           |            | 0.5        | 1.0        |            |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

| MATRIX: SOIL                                                 |           |       |       | Sample Number | 7          | 8          | 9          | 10         |
|--------------------------------------------------------------|-----------|-------|-------|---------------|------------|------------|------------|------------|
|                                                              |           |       |       | Sample Name   | BH1 SS2    | BH1 SS4    | BH1 SS1    | BH1 SS10   |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - | UNDEFINED |       |       | Sample Matrix | Soil       | Soil       | Soil       | Soil       |
|                                                              |           |       |       | Sample Date   | 16/11/2022 | 16/11/2022 | 16/11/2022 | 17/11/2022 |
| Parameter                                                    | Units     | RL    | L1    |               | Result     | Result     | Result     | Result     |
| Metals and Inorganics (continued)                            |           |       |       |               |            |            |            |            |
| Nickel                                                       | µg/g      | 0.5   | 130   |               |            | 15         | 11         |            |
| Silver                                                       | µg/g      | 0.05  | 25    |               |            | < 0.05     | < 0.05     |            |
| Thallium                                                     | µg/g      | 0.02  | 1     |               |            | 0.16       | 0.09       |            |
| Uranium                                                      | µg/g      | 0.002 | 23    |               |            | 0.53       | 0.65       |            |
| Vanadium                                                     | µg/g      | 3     | 86    |               |            | 13         | 20         |            |
| Zinc                                                         | µg/g      | 0.7   | 340   |               |            | 32         | 40         |            |
| Water Soluble Boron                                          | µg/g      | 0.5   | 1.5   |               |            | < 0.5      | < 0.5      |            |
| Other (ORP)                                                  |           |       |       |               |            |            |            |            |
| Mercury                                                      | ug/g      | 0.05  | 1.8   |               |            | < 0.05     | < 0.05     |            |
| Sodium Adsorption Ratio                                      | No unit   | 0.2   | 5     |               |            | 11.3       | 1.3        |            |
| SAR Calcium                                                  | mg/L      | 0.2   |       |               |            | 9.6        | 302        |            |
| SAR Magnesium                                                | mg/L      | 0.3   |       |               |            | 0.9        | < 0.3      |            |
| SAR Sodium                                                   | mg/L      | 0.1   |       |               |            | 136        | 81.9       |            |
| Conductivity                                                 | mS/cm     | 0.002 | 0.7   |               |            | 0.73       | 1.8        |            |
| рН                                                           | pH Units  | 0.05  |       |               |            | 8.34       | 9.12       |            |
| Chromium VI                                                  | µg/g      | 0.2   | 10    |               |            | < 0.2      | 0.2        |            |
| Free Cyanide                                                 | µg/g      | 0.05  | 0.051 |               |            | < 0.05     | < 0.05     |            |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

| MATRIX: SOIL                                                          |       |      | S    | ample Number  | 7          | 8          | 9          | 10         |
|-----------------------------------------------------------------------|-------|------|------|---------------|------------|------------|------------|------------|
|                                                                       |       |      |      | Sample Name   | BH1 SS2    | BH1 SS4    | BH1 SS1    | BH1 SS10   |
| 1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UNDEFINED |       |      |      | Sample Matrix | Soil       | Soil       | Soil       | Soil       |
|                                                                       |       |      |      | Sample Date   | 16/11/2022 | 16/11/2022 | 16/11/2022 | 17/11/2022 |
| Parameter                                                             | Units | RL   | L1   |               | Result     | Result     | Result     | Result     |
| 2AHs                                                                  |       |      |      |               |            |            |            |            |
| Acenaphthene                                                          | µg/g  | 0.05 | 29   |               | < 0.05     | < 0.05     |            |            |
| Acenaphthylene                                                        | µg/g  | 0.05 | 0.17 |               | < 0.05     | < 0.05     |            |            |
| Anthracene                                                            | µg/g  | 0.05 | 0.74 |               | < 0.05     | < 0.05     |            |            |
| Benzo(a)anthracene                                                    | µg/g  | 0.05 | 0.63 |               | < 0.05     | < 0.05     |            |            |
| Benzo(a)pyrene                                                        | µg/g  | 0.05 | 0.3  |               | < 0.05     | < 0.05     |            |            |
| Benzo(b+j)fluoranthene                                                | µg/g  | 0.05 | 0.78 |               | < 0.05     | < 0.05     |            |            |
| Benzo(ghi)perylene                                                    | µg/g  | 0.1  | 7.8  |               | < 0.1      | < 0.1      |            |            |
| Benzo(k)fluoranthene                                                  | µg/g  | 0.05 | 0.78 |               | < 0.05     | < 0.05     |            |            |
| Chrysene                                                              | µg/g  | 0.05 | 7.8  |               | < 0.05     | < 0.05     |            |            |
| Dibenzo(a,h)anthracene                                                | µg/g  | 0.06 | 0.1  |               | < 0.06     | < 0.06     |            |            |
| Fluoranthene                                                          | µg/g  | 0.05 | 0.69 |               | < 0.05     | < 0.05     |            |            |
| Fluorene                                                              | µg/g  | 0.05 | 69   |               | < 0.05     | < 0.05     |            |            |
| Indeno(1,2,3-cd)pyrene                                                | µg/g  | 0.1  | 0.48 |               | < 0.1      | < 0.1      |            |            |
| 1-Methylnaphthalene                                                   | µg/g  | 0.05 |      |               | < 0.05     | < 0.05     |            |            |
| 2-Methylnaphthalene                                                   | µg/g  | 0.05 |      |               | < 0.05     | < 0.05     |            |            |
| Methylnaphthalene, 2-(1-)                                             | µg/g  | 0.05 | 3.4  |               | < 0.05     | < 0.05     |            |            |
| Naphthalene                                                           | µg/g  | 0.05 | 0.75 |               | < 0.05     | < 0.05     |            |            |
| Phenanthrene                                                          | µg/g  | 0.05 | 7.8  |               | < 0.05     | < 0.05     |            |            |
| Pyrene                                                                | µg/g  | 0.05 | 78   |               | < 0.05     | < 0.05     |            |            |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

|                                                                 |            |      | Sample Number | 7          | 8          | 9          | 10         |
|-----------------------------------------------------------------|------------|------|---------------|------------|------------|------------|------------|
| MATRIX: SOIL                                                    |            |      |               |            |            |            |            |
|                                                                 |            |      | Sample Name   |            | BH1 SS4    | BH1 SS1    | BH1 SS10   |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UN | IDEFINED   |      | Sample Matrix |            | Soil       | Soil       | Soil       |
|                                                                 |            |      | Sample Date   | 16/11/2022 | 16/11/2022 | 16/11/2022 | 17/11/2022 |
| Parameter                                                       | Units      | RL   | L1            | Result     | Result     | Result     | Result     |
| PHCs                                                            |            |      |               |            |            |            |            |
| F1 (C6-C10)                                                     | µg/g       | 10   | 65            |            | < 10       |            | < 10       |
| F1-BTEX (C6-C10)                                                | µg/g       | 10   | 65            |            | < 10       |            | < 10       |
| F2 (C10-C16)                                                    | µg/g       | 10   | 150           |            | < 10       |            | 18         |
| F3 (C16-C34)                                                    | µg/g       | 50   | 1300          |            | < 50       |            | 90         |
| F4 (C34-C50)                                                    | hð/ð       | 50   | 5600          |            | 53         |            | < 50       |
| Chromatogram returned to baseline at nC50                       | Yes / No   | no   |               |            | YES        |            | YES        |
| SVOC Surrogates                                                 |            |      |               |            |            |            |            |
| Surr 2-Fluorobiphenyl                                           | Surr Rec % | no   |               | 98         | 98         |            |            |
| Surr 4-Terphenyl-d14                                            | Surr Rec % | no   |               | 102        | 103        |            |            |
| Surr 2-Methylnaphthalene-D10                                    | Surr Rec % | no   |               | 96         | 97         |            |            |
| Surr Fluoranthene-D10                                           | Surr Rec % | no   |               | 94         | 93         |            |            |
| THMs (VOC)                                                      |            |      |               |            |            |            |            |
| Bromodichloromethane                                            | hð/ð       | 0.05 | 1.9           |            | < 0.05     |            | < 0.05     |
| Bromoform                                                       | µg/g       | 0.05 | 0.26          |            | < 0.05     |            | < 0.05     |
| Dibromochloromethane                                            | µg/g       | 0.05 | 2.9           |            | < 0.05     |            | < 0.05     |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

|                                                          |                |      |               | _          |            |            | 10         |
|----------------------------------------------------------|----------------|------|---------------|------------|------------|------------|------------|
| MATRIX: SOIL                                             |                |      | Sample Number | 7          | 8          | 9          | 10         |
|                                                          |                |      | Sample Name   | BH1 SS2    | BH1 SS4    | BH1 SS1    | BH1 SS10   |
| 1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parklar | nd - UNDEFINED |      | Sample Matrix | Soil       | Soil       | Soil       | Soil       |
|                                                          |                |      | Sample Date   | 16/11/2022 | 16/11/2022 | 16/11/2022 | 17/11/2022 |
| Parameter                                                | Units          | RL   | L1            | Result     | Result     | Result     | Result     |
| /OC Surrogates                                           |                |      |               |            |            |            |            |
| Surr 1,2-Dichloroethane-d4                               | Surr Rec %     | no   |               |            | 88         |            | 88         |
| Surr 4-Bromofluorobenzene                                | Surr Rec %     | no   |               |            | 94         |            | 93         |
| Surr 2-Bromo-1-Chloropropane                             | Surr Rec %     | no   |               |            | 74         |            | 74         |
| /OCs                                                     |                |      |               |            |            |            |            |
| Acetone                                                  | hð/ð           | 0.5  | 28            |            | < 0.5      |            | < 0.5      |
| Bromomethane                                             | hð/ð           | 0.05 | 0.05          |            | < 0.05     |            | < 0.05     |
| Carbon tetrachloride                                     | µg/g           | 0.05 | 0.12          |            | < 0.05     |            | < 0.05     |
| Chlorobenzene                                            | µg/g           | 0.05 | 2.7           |            | < 0.05     |            | < 0.05     |
| Chloroform                                               | hð\ð           | 0.05 | 0.18          |            | < 0.05     |            | < 0.05     |
| 1,2-Dichlorobenzene                                      | µg/g           | 0.05 | 1.7           |            | < 0.05     |            | < 0.05     |
| 1,3-Dichlorobenzene                                      | µg/g           | 0.05 | 6             |            | < 0.05     |            | < 0.05     |
| 1,4-Dichlorobenzene                                      | µg/g           | 0.05 | 0.097         |            | < 0.05     |            | < 0.05     |
| Dichlorodifluoromethane                                  | µg/g           | 0.05 | 25            |            | < 0.05     |            | < 0.05     |
| 1,1-Dichloroethane                                       | µg/g           | 0.05 | 0.6           |            | < 0.05     |            | < 0.05     |
| 1,2-Dichloroethane                                       | µg/g           | 0.05 | 0.05          |            | < 0.05     |            | < 0.05     |
| 1,1-Dichloroethylene                                     | µg/g           | 0.05 | 0.05          |            | < 0.05     |            | < 0.05     |
| trans-1,2-Dichloroethylene                               | hð\ð           | 0.05 | 0.75          |            | < 0.05     |            | < 0.05     |
| cis-1,2-Dichloroethylene                                 | hð/ð           | 0.05 | 2.5           |            | < 0.05     |            | < 0.05     |
| 1,2-Dichloropropane                                      | hð\ð           | 0.05 | 0.085         |            | < 0.05     |            | < 0.05     |
| cis-1,3-dichloropropene                                  | hð\ð           | 0.03 |               |            | < 0.03     |            | < 0.03     |
| trans-1,3-dichloropropene                                | hð\ð           | 0.03 |               |            | < 0.03     |            | < 0.03     |
| 1,3-dichloropropene (total)                              | hð\ð           | 0.05 | 0.081         |            | < 0.05     |            | < 0.05     |



### Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

| MATRIX: SOIL                                                        |       |      | Sample Numl | <b>9er</b> 7    | 8          | 9          | 10         |
|---------------------------------------------------------------------|-------|------|-------------|-----------------|------------|------------|------------|
|                                                                     |       |      | Sample Na   | me BH1 SS2      | BH1 SS4    | BH1 SS1    | BH1 SS10   |
| .1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UNDEFI | NED   |      | Sample Ma   | <b>rix</b> Soil | Soil       | Soil       | Soil       |
|                                                                     |       |      | Sample Da   | te 16/11/2022   | 16/11/2022 | 16/11/2022 | 17/11/2022 |
| Parameter                                                           | Units | RL   | L1          | Result          | Result     | Result     | Result     |
| VOCs (continued)                                                    |       |      |             |                 |            |            |            |
| Ethylenedibromide                                                   | µg/g  | 0.05 | 0.05        |                 | < 0.05     |            | < 0.05     |
| n-Hexane                                                            | µg/g  | 0.05 | 34          |                 | < 0.05     |            | < 0.05     |
| Methyl ethyl ketone                                                 | µg/g  | 0.5  | 44          |                 | < 0.5      |            | < 0.5      |
| Methyl isobutyl ketone                                              | µg/g  | 0.5  | 4.3         |                 | < 0.5      |            | < 0.5      |
| Methyl-t-butyl Ether                                                | µg/g  | 0.05 | 1.4         |                 | < 0.05     |            | < 0.05     |
| Methylene Chloride                                                  | hð/ð  | 0.05 | 0.96        |                 | < 0.05     |            | < 0.05     |
| Styrene                                                             | hð/ð  | 0.05 | 2.2         |                 | < 0.05     |            | < 0.05     |
| Tetrachloroethylene                                                 | hð/ð  | 0.05 | 2.3         |                 | < 0.05     |            | < 0.05     |
| 1,1,1,2-Tetrachloroethane                                           | µg/g  | 0.05 | 0.05        |                 | < 0.05     |            | < 0.05     |
| 1,1,2,2-Tetrachloroethane                                           | hð/ð  | 0.05 | 0.05        |                 | < 0.05     |            | < 0.05     |
| 1,1,1-Trichloroethane                                               | hð/ð  | 0.05 | 3.4         |                 | < 0.05     |            | < 0.05     |
| 1,1,2-Trichloroethane                                               | hð/ð  | 0.05 | 0.05        |                 | < 0.05     |            | < 0.05     |
| Trichloroethylene                                                   | hð/ð  | 0.05 | 0.52        |                 | < 0.05     |            | < 0.05     |
| Trichlorofluoromethane                                              | µg/g  | 0.05 | 5.8         |                 | < 0.05     |            | < 0.05     |
| Vinyl Chloride                                                      | µg/g  | 0.02 | 0.022       |                 | < 0.02     |            | < 0.02     |



## EXCEEDANCE SUMMARY

|                         |                      |         |        | REG153 / SOIL /<br>FINE - TABLE 2 -<br>Residential/Parklan |
|-------------------------|----------------------|---------|--------|------------------------------------------------------------|
| Parameter               | Method               | Units   | Result | d - UNDEFINED<br><b>L1</b>                                 |
| 3H1 SS4                 |                      |         |        |                                                            |
| Conductivity            | EPA 6010/SM 2510     | mS/cm   | 0.73   | 0.7                                                        |
| Sodium Adsorption Ratio | MOE 4696e01/EPA 6010 | No unit | 11.3   | 5                                                          |
| H1 SS1                  |                      |         |        |                                                            |
| Conductivity            | EPA 6010/SM 2510     | mS/cm   | 1.8    | 0.7                                                        |



### Conductivity

# Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

| Parameter    | QC batch      | Units | RL    | Method | Dup | olicate | LC              | S/Spike Blank |                        | Matrix Spike / Ref. |                     | :    |
|--------------|---------------|-------|-------|--------|-----|---------|-----------------|---------------|------------------------|---------------------|---------------------|------|
|              | Reference     |       |       | Blank  | RPD | AC      | Spike           |               | Recovery Limits<br>(%) |                     | Recovery Limits (%) |      |
|              |               |       |       |        |     | (%)     | Recovery<br>(%) | Low           | High                   | (%)                 | Low                 | High |
| Conductivity | EWL0565-NOV22 | mS/cm | 0.002 | <0.002 | 0   | 10      | 99              | 90            | 110                    | NA                  |                     |      |

# Cyanide by SFA

## Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

| Parameter    | QC batch      | Units | RL   | Method | Duj | olicate | LC              | S/Spike Blank          | S/Spike Blank |                   | Matrix Spike / Ref.    |      |  |
|--------------|---------------|-------|------|--------|-----|---------|-----------------|------------------------|---------------|-------------------|------------------------|------|--|
|              | Reference     |       |      | Blank  | RPD | AC      | Spike           | Recovery Limits<br>(%) |               | Spike<br>Recovery | Recovery Limits<br>(%) |      |  |
|              |               |       |      |        |     | (%)     | Recovery<br>(%) | Low                    | High          | (%)               | Low                    | High |  |
| Free Cyanide | SKA5082-NOV22 | hð/ð  | 0.05 | <0.05  | ND  | 20      | 104             | 80                     | 120           | 87                | 75                     | 125  |  |

# Hexavalent Chromium by SFA

### Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVISKA-LAK-AN-012

| Parameter   | QC batch      | Units | RL  | Method | Dup | olicate | LC              | S/Spike Blank          |      | Matrix Spike / Ref. |     | f.                |                        |  |
|-------------|---------------|-------|-----|--------|-----|---------|-----------------|------------------------|------|---------------------|-----|-------------------|------------------------|--|
|             | Reference     |       |     | Blank  | RPD | AC      | Spike           | Recovery Limits<br>(%) |      | •                   |     | Spike<br>Recovery | Recovery Limits<br>(%) |  |
|             |               |       |     |        |     | (%)     | Recovery<br>(%) | Low                    | High | (%)                 | Low | High              |                        |  |
| Chromium VI | SKA5084-NOV22 | ug/g  | 0.2 | <0.2   | 2   | 20      | 111             | 80                     | 120  | 96                  | 75  | 125               |                        |  |



### Mercury by CVAAS

# Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

| Parameter | QC batch      | Units | RL   | Method | Dup | olicate | LC              | LCS/Spike Blank        |      | Matrix Spike / Ref. |                        |      |
|-----------|---------------|-------|------|--------|-----|---------|-----------------|------------------------|------|---------------------|------------------------|------|
|           | Reference     |       |      | Blank  | RPD | AC      | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery   | Recovery Limits<br>(%) |      |
|           |               |       |      |        |     | (%)     | Recovery<br>(%) | Low                    | High | (%)                 | Low                    | High |
| Mercury   | EMS0205-NOV22 | ug/g  | 0.05 | <0.05  | ND  | 20      | 101             | 80                     | 120  | 98                  | 70                     | 130  |

# Metals in aqueous samples - ICP-OES

## Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

| Parameter     | QC batch      |      |     | Method | Duplicate |     | LC              | S/Spike Blank |                 | Matrix Spike / Ref. |               |                 |
|---------------|---------------|------|-----|--------|-----------|-----|-----------------|---------------|-----------------|---------------------|---------------|-----------------|
|               | Reference     |      |     | Blank  | RPD       | AC  | Spike           | Recove<br>(%  | ry Limits<br>6) | Spike<br>Recovery   | Recover<br>(9 | ry Limits<br>%) |
|               |               |      |     |        |           | (%) | Recovery<br>(%) | Low           | High            | (%)                 | Low           | High            |
| SAR Calcium   | ESG0072-NOV22 | mg/L | 0.2 | <0.09  | 10        | 20  | 103             | 80            | 120             | 90                  | 70            | 130             |
| SAR Magnesium | ESG0072-NOV22 | mg/L | 0.3 | <0.02  | 10        | 20  | 102             | 80            | 120             | 92                  | 70            | 130             |
| SAR Sodium    | ESG0072-NOV22 | mg/L | 0.1 | <0.15  | 2         | 20  | 101             | 80            | 120             | 94                  | 70            | 130             |



# Metals in Soil - Aqua-regia/ICP-MS

# Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

| Parameter  | QC batch      | Units | RL    | Method | Dup | icate     | LC                | S/Spike Blank |      | Ma                | trix Spike / Ref |                 |
|------------|---------------|-------|-------|--------|-----|-----------|-------------------|---------------|------|-------------------|------------------|-----------------|
|            | Reference     |       |       | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recover<br>(% |      | Spike<br>Recovery | Recover<br>(9    | ry Limits<br>%) |
|            |               |       |       |        |     | (%)       | (%)               | Low           | High | (%)               | Low              | High            |
| Silver     | EMS0205-NOV22 | ug/g  | 0.05  | <0.05  | ND  | 20        | NV                | 70            | 130  | 101               | 70               | 130             |
| Arsenic    | EMS0205-NOV22 | µg/g  | 0.5   | <0.5   | 2   | 20        | 94                | 70            | 130  | 102               | 70               | 130             |
| Barium     | EMS0205-NOV22 | ug/g  | 0.1   | <0.1   | 3   | 20        | 93                | 70            | 130  | 115               | 70               | 130             |
| Beryllium  | EMS0205-NOV22 | µg/g  | 0.02  | <0.02  | 4   | 20        | 92                | 70            | 130  | 94                | 70               | 130             |
| Boron      | EMS0205-NOV22 | µg/g  | 1     | <1     | 4   | 20        | 98                | 70            | 130  | 96                | 70               | 130             |
| Cadmium    | EMS0205-NOV22 | ug/g  | 0.05  | <0.05  | 8   | 20        | 95                | 70            | 130  | 116               | 70               | 130             |
| Cobalt     | EMS0205-NOV22 | µg/g  | 0.01  | <0.01  | 6   | 20        | 97                | 70            | 130  | 102               | 70               | 130             |
| Chromium   | EMS0205-NOV22 | µg/g  | 0.5   | <0.5   | 2   | 20        | 99                | 70            | 130  | 95                | 70               | 130             |
| Copper     | EMS0205-NOV22 | µg/g  | 0.1   | <0.1   | 4   | 20        | 98                | 70            | 130  | 102               | 70               | 130             |
| Molybdenum | EMS0205-NOV22 | µg/g  | 0.1   | <0.1   | 2   | 20        | 94                | 70            | 130  | 81                | 70               | 130             |
| Nickel     | EMS0205-NOV22 | ug/g  | 0.5   | <0.5   | 5   | 20        | 100               | 70            | 130  | 102               | 70               | 130             |
| Lead       | EMS0205-NOV22 | µg/g  | 0.1   | <0.1   | 1   | 20        | 94                | 70            | 130  | 109               | 70               | 130             |
| Antimony   | EMS0205-NOV22 | µg/g  | 0.8   | <0.8   | ND  | 20        | 110               | 70            | 130  | 87                | 70               | 130             |
| Selenium   | EMS0205-NOV22 | µg/g  | 0.7   | <0.7   | ND  | 20        | 100               | 70            | 130  | 106               | 70               | 130             |
| Thallium   | EMS0205-NOV22 | µg/g  | 0.02  | <0.02  | 2   | 20        | NV                | 70            | 130  | 108               | 70               | 130             |
| Uranium    | EMS0205-NOV22 | µg/g  | 0.002 | <0.002 | 0   | 20        | 94                | 70            | 130  | NV                | 70               | 130             |
| Vanadium   | EMS0205-NOV22 | µg/g  | 3     | <3     | 1   | 20        | 96                | 70            | 130  | 96                | 70               | 130             |
| Zinc       | EMS0205-NOV22 | µg/g  | 0.7   | <0.7   | 1   | 20        | 100               | 70            | 130  | 95                | 70               | 130             |



## Petroleum Hydrocarbons (F1)

# Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

| Parameter   | QC batch      | Units | RL | Method | Duj | olicate | LC              | LCS/Spike Blank     |      | Matrix Spike / Ref. |     |                 |
|-------------|---------------|-------|----|--------|-----|---------|-----------------|---------------------|------|---------------------|-----|-----------------|
|             | Reference     |       |    | Blank  | RPD | AC      | Spike           | Recovery Limits (%) |      | Spike<br>Recovery   |     | ry Limits<br>%) |
|             |               |       |    |        |     | (%)     | Recovery<br>(%) | Low                 | High | (%)                 | Low | High            |
| F1 (C6-C10) | GCM0381-NOV22 | hð\ð  | 10 | <10    | ND  | 30      | 97              | 80                  | 120  | 109                 | 60  | 140             |

# Petroleum Hydrocarbons (F2-F4)

# Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

| Parameter    | QC batch      | Units | RL | Method D |     | Duplicate LCS |                 | S/Spike Blank |                 | Matrix Spike / Ref. |                        |      |
|--------------|---------------|-------|----|----------|-----|---------------|-----------------|---------------|-----------------|---------------------|------------------------|------|
|              | Reference     |       |    | Blank    | RPD | AC Spike      |                 | Recove        | ry Limits<br>%) | Spike<br>Recovery   | Recovery Limits<br>(%) |      |
|              |               |       |    |          |     | (%)           | Recovery<br>(%) | Low           | High            | (%)                 | Low                    | High |
| F2 (C10-C16) | GCM0423-NOV22 | hð\ð  | 10 | <10      | ND  | 30            | 118             | 80            | 120             | 124                 | 60                     | 140  |
| F3 (C16-C34) | GCM0423-NOV22 | µg/g  | 50 | <50      | 17  | 30            | 118             | 80            | 120             | 124                 | 60                     | 140  |
| F4 (C34-C50) | GCM0423-NOV22 | µg/g  | 50 | <50      | ND  | 30            | 118             | 80            | 120             | 124                 | 60                     | 140  |



# pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

| Parameter | QC batch      | Units    | RL   | Method | Dup | licate | LC              | LCS/Spike Blank        |      | Matrix Spike / Ref. |                        |      |
|-----------|---------------|----------|------|--------|-----|--------|-----------------|------------------------|------|---------------------|------------------------|------|
|           | Reference     |          |      | Blank  | RPD | AC     | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery   | Recovery Limits<br>(%) |      |
|           |               |          |      |        |     | (%)    | Recovery<br>(%) | Low                    | High | (%)                 | Low                    | High |
| рН        | ARD0101-NOV22 | pH Units | 0.05 |        | 0   | 20     | 100             | 80                     | 120  |                     |                        |      |



# **Semi-Volatile Organics**

# Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

| Parameter              | QC batch      | Units | RL   | Method<br>Blank | Dup | licate    | LCS                      | S/Spike Blank       |      | Matrix Spike / Ref. |     |            |
|------------------------|---------------|-------|------|-----------------|-----|-----------|--------------------------|---------------------|------|---------------------|-----|------------|
|                        | Reference     |       |      |                 | RPD | AC<br>(%) | Spike<br>Recovery<br>(%) | Recovery Limits (%) |      | Spike<br>Recovery   |     | ery Limits |
|                        |               |       |      |                 |     | (,,,)     |                          | Low                 | High | (%)                 | Low | High       |
| 1-Methylnaphthalene    | GCM0402-NOV22 | hð\ð  | 0.05 | < 0.05          | ND  | 40        | 101                      | 50                  | 140  | 72                  | 50  | 140        |
| 2-Methylnaphthalene    | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 98                       | 50                  | 140  | 70                  | 50  | 140        |
| Acenaphthene           | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 103                      | 50                  | 140  | 73                  | 50  | 140        |
| Acenaphthylene         | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 98                       | 50                  | 140  | 69                  | 50  | 140        |
| Anthracene             | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 96                       | 50                  | 140  | 67                  | 50  | 140        |
| Benzo(a)anthracene     | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 101                      | 50                  | 140  | 74                  | 50  | 140        |
| Benzo(a)pyrene         | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 93                       | 50                  | 140  | 65                  | 50  | 140        |
| Benzo(b+j)fluoranthene | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 102                      | 50                  | 140  | 70                  | 50  | 140        |
| Benzo(ghi)perylene     | GCM0402-NOV22 | µg/g  | 0.1  | < 0.1           | ND  | 40        | 108                      | 50                  | 140  | 65                  | 50  | 140        |
| Benzo(k)fluoranthene   | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 94                       | 50                  | 140  | 66                  | 50  | 140        |
| Chrysene               | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 100                      | 50                  | 140  | 70                  | 50  | 140        |
| Dibenzo(a,h)anthracene | GCM0402-NOV22 | µg/g  | 0.06 | < 0.06          | ND  | 40        | 89                       | 50                  | 140  | 59                  | 50  | 140        |
| Fluoranthene           | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 92                       | 50                  | 140  | 64                  | 50  | 140        |
| Fluorene               | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 99                       | 50                  | 140  | 69                  | 50  | 140        |
| Indeno(1,2,3-cd)pyrene | GCM0402-NOV22 | µg/g  | 0.1  | < 0.1           | ND  | 40        | 90                       | 50                  | 140  | 59                  | 50  | 140        |
| Naphthalene            | GCM0402-NOV22 | hð/ð  | 0.05 | < 0.05          | ND  | 40        | 99                       | 50                  | 140  | 71                  | 50  | 140        |
| Phenanthrene           | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 100                      | 50                  | 140  | 68                  | 50  | 140        |
| Pyrene                 | GCM0402-NOV22 | µg/g  | 0.05 | < 0.05          | ND  | 40        | 104                      | 50                  | 140  | 73                  | 50  | 140        |



# Volatile Organics

# Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

| Parameter                 | QC batch      | Units | RL   | Method | Dup | licate    | LC                | S/Spike Blank |      | Matrix Spike / Ref. |     |                  |  |
|---------------------------|---------------|-------|------|--------|-----|-----------|-------------------|---------------|------|---------------------|-----|------------------|--|
|                           | Reference     |       |      | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recover<br>(% | -    | Spike<br>Recovery   |     | ery Limits<br>%) |  |
|                           |               |       |      |        |     | (%)       | (%)               | Low           | High | (%)                 | Low | High             |  |
| 1,1,1,2-Tetrachloroethane | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 96                | 60            | 130  | 102                 | 50  | 140              |  |
| 1,1,1-Trichloroethane     | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 102               | 60            | 130  | 105                 | 50  | 140              |  |
| 1,1,2,2-Tetrachloroethane | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 97                | 60            | 130  | 89                  | 50  | 140              |  |
| 1,1,2-Trichloroethane     | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 92                  | 50  | 140              |  |
| 1,1-Dichloroethane        | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 105                 | 50  | 140              |  |
| 1,1-Dichloroethylene      | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 102               | 60            | 130  | 106                 | 50  | 140              |  |
| 1,2-Dichlorobenzene       | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 96                | 60            | 130  | 101                 | 50  | 140              |  |
| 1,2-Dichloroethane        | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 90                  | 50  | 140              |  |
| 1,2-Dichloropropane       | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 100                 | 50  | 140              |  |
| 1,3-Dichlorobenzene       | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 102               | 60            | 130  | 105                 | 50  | 140              |  |
| 1,4-Dichlorobenzene       | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 101                 | 50  | 140              |  |
| Acetone                   | GCM0380-NOV22 | µg/g  | 0.5  | < 0.5  | ND  | 50        | 89                | 50            | 140  | 81                  | 50  | 140              |  |
| Benzene                   | GCM0380-NOV22 | µg/g  | 0.02 | < 0.02 | ND  | 50        | 103               | 60            | 130  | 106                 | 50  | 140              |  |
| Bromodichloromethane      | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 93                  | 50  | 140              |  |
| Bromoform                 | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 91                | 60            | 130  | 81                  | 50  | 140              |  |
| Bromomethane              | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 86                | 50            | 140  | 97                  | 50  | 140              |  |
| Carbon tetrachloride      | GCM0380-NOV22 | hð\ð  | 0.05 | < 0.05 | ND  | 50        | 103               | 60            | 130  | 101                 | 50  | 140              |  |
| Chlorobenzene             | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 106                 | 50  | 140              |  |
| Chloroform                | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 99                | 60            | 130  | 102                 | 50  | 140              |  |
| cis-1,2-Dichloroethylene  | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND  | 50        | 100               | 60            | 130  | 103                 | 50  | 140              |  |



# Volatile Organics (continued)

# Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

| Parameter                  | QC batch      | Units | RL   | Method | Duplicate |           | LC                       | S/Spike Blank |      | Matrix Spike / Ref. |     |                 |
|----------------------------|---------------|-------|------|--------|-----------|-----------|--------------------------|---------------|------|---------------------|-----|-----------------|
|                            | Reference     |       |      | Blank  | RPD       | AC<br>(%) | Spike<br>Recovery<br>(%) | Recover<br>(% | -    | Spike<br>Recovery   |     | ry Limits<br>%) |
|                            |               |       |      |        |           | (70)      |                          | Low           | High | (%)                 | Low | High            |
| cis-1,3-dichloropropene    | GCM0380-NOV22 | μg/g  | 0.03 | < 0.03 | ND        | 50        | 104                      | 60            | 130  | 94                  | 50  | 140             |
| Dibromochloromethane       | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 100                      | 60            | 130  | 87                  | 50  | 140             |
| Dichlorodifluoromethane    | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 78                       | 50            | 140  | 65                  | 50  | 140             |
| Ethylbenzene               | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 98                       | 60            | 130  | 110                 | 50  | 140             |
| Ethylenedibromide          | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 99                       | 60            | 130  | 89                  | 50  | 140             |
| n-Hexane                   | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 93                       | 60            | 130  | 77                  | 50  | 140             |
| m/p-xylene                 | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 97                       | 60            | 130  | 109                 | 50  | 140             |
| Methyl ethyl ketone        | GCM0380-NOV22 | µg/g  | 0.5  | < 0.5  | ND        | 50        | 94                       | 50            | 140  | 81                  | 50  | 140             |
| Methyl isobutyl ketone     | GCM0380-NOV22 | µg/g  | 0.5  | < 0.5  | ND        | 50        | 96                       | 50            | 140  | 84                  | 50  | 140             |
| Methyl-t-butyl Ether       | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 94                       | 60            | 130  | 85                  | 50  | 140             |
| Methylene Chloride         | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 96                       | 60            | 130  | 98                  | 50  | 140             |
| o-xylene                   | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 101                      | 60            | 130  | 109                 | 50  | 140             |
| Styrene                    | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 102                      | 60            | 130  | 107                 | 50  | 140             |
| Tetrachloroethylene        | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 102                      | 60            | 130  | 105                 | 50  | 140             |
| Toluene                    | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 101                      | 60            | 130  | 105                 | 50  | 140             |
| trans-1,2-Dichloroethylene | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 98                       | 60            | 130  | 105                 | 50  | 140             |
| trans-1,3-dichloropropene  | GCM0380-NOV22 | µg/g  | 0.03 | < 0.03 | ND        | 50        | 102                      | 60            | 130  | 87                  | 50  | 140             |
| Trichloroethylene          | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 100                      | 60            | 130  | 107                 | 50  | 140             |
| Trichlorofluoromethane     | GCM0380-NOV22 | µg/g  | 0.05 | < 0.05 | ND        | 50        | 96                       | 50            | 140  | 119                 | 50  | 140             |
| Vinyl Chloride             | GCM0380-NOV22 | µg/g  | 0.02 | < 0.02 | ND        | 50        | 89                       | 50            | 140  | 92                  | 50  | 140             |



#### Water Soluble Boron

#### Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

| Parameter           | QC batch      | Units | RL  | Method | Dup | olicate | LC              | CS/Spike Blank         |      | Matrix Spike / Ref. |         |                 |
|---------------------|---------------|-------|-----|--------|-----|---------|-----------------|------------------------|------|---------------------|---------|-----------------|
|                     | Reference     |       |     | Blank  | RPD | AC      | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery   | Recover | ry Limits<br>%) |
|                     |               |       |     |        |     | (%)     | Recovery<br>(%) | Low                    | High | (%)                 | Low     | High            |
| Water Soluble Boron | ESG0058-NOV22 | hð\ð  | 0.5 | <0.5   | 14  | 20      | 100             | 80                     | 120  | 88                  | 70      | 130             |

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

**RL: Reporting limit** 

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

### LEGEND

### **FOOTNOTES**

NSS Insufficient sample for analysis.

- RL Reporting Limit.
  - Reporting limit raised.
  - ↓ Reporting limit lowered.
  - NA The sample was not analysed for this analyte
  - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

| Br. Much. Notand.     Received By (signature).     Jahon       Date: Mu. IX     D. I. (minddy).     Custory Scal Present. Yes     No       Date: Mu. IX     D. I. (minddy).     Custory Scal Present. Yes     No       REPORT INFORMATION     MVOICE INFORMATION     Custory Scal Present. Yes     No       Vy Circo-Aud. E-VG, Net. C No     [Game as Report Information)     Constory Scal Present. Yes     No       Vy Circo-Aud. E-VG, Net. C No     [Game as Report Information)     NOVICE INFORMATION     NOVICE INFORMATION       Vy Lit TRAM     [Game as Report Information)     Constory.     No       UNI TRAM     Contact:     Address:     Address:       Multi TRAM     Contact:     Contact:     Address:       More     [Game as Report Information)     Contact:     Contact:       Multi TRAM     Contact:     Contact:     Address:       Multi TRAM     Contact:     Contact:     Contact:       Multi RISION     Contact:     Contact:     Contact:       Multi RISION     Contact:     Contact:     Contact:       Multi RI Rising     Multi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pratory Information Section - Lab use only<br>Cooling Agent Present: Yes No O<br>Temperature Upon Receipt (*C) よ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:     M. I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cooling Agent Present: Yes J No J Type: LCC 40/N LAB LIMS # CA 40233<br>Temperature Upon Receipt (°C) 4 J Provention #: Prov #: 1001<br>Autoration #: Provention #: Provention 10015 As myShon Rd P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| REPORT INFORMATION     INVOICE INFORMATION       W. Érico-Audal E-OGINEET N     INVOICE INFORMATION       W. Érico-Audal E-OGINEET N     INVOICE INFORMATION       U.U.I. TERAU     Company.       U.U.I. TERAU     Company.       Demony.     Company.       Demony.     Contact:       Phone:     Phone:       Phone:     Phone:       Prome:     Phone:       Beg 15304     OReg 40619       Other Regulations:     Sewer By-Law:       Beg 15304     Orber Regulations:       Bill 2     SSAMPLED       Bill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22-379-Jean Rol Sile LocationID: 1095 K: Mghon Rol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| w. Greondal Evolution     Correct Avolute T Avolut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22-279-Bed Site Location/10: 1095 K: MSter Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ULI TRAM     Compary:       L BCATGAL     Of       Contact:     Address:       Address:     Phone:       Phone:     Phone:       Phon:     Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2-379-Bed Site Location/ID: 1095 Kingthen Rol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| I. J. Schriften Df       Contact:         Address:       Address:         Phone:       Phone:         Hch-Egrouwbel and Col       Email:         Prone:       Phone:         Phone:       Phone:         Beg 13/04       O.Reg 406/19         Other Regulations:       Sewer By-Law:         Egg 15/04       O.Reg 406/19         Other Regulations:       Sewer By-Law:         e1       RestPark Soil resource:         e2       Ind/com         Recored to file (and construction)       Phone:         e3       Appx.         e3       Appx.         e3       Ind/construction         e3       Appx.         e3       Appx.         b1       255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Address:         Address:           Hone:         Phone:           Hone:         Email:           Regulations:         Regulations:           e1         RestPark Soli Toxur.           e1         RestPark Soli Toxur.           e1         RestPark Soli Toxur.           e1         RestPark Soli Toxur.           e2         Procom           e3         Apriconarse           PAPA         Apriconarse           BH         2.55           BH         2.55           BH         2.55           BH         2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TURNAROUND TIME (TAT) REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ii: Ukrch-@grounululung. C.       Phone:         Phone:       Phone:         ii: Ukrch-@grounululung. C.       Email:         Regulations:       Regulations:         albe 1       RestPark Soul Texture:         10: 0.Reg 153/04       O.Reg 406/19         1       Regulations:         albe 1       Restorations:         1       Provo         albe 2       I.Belf         2       I.Belf </td <td>TAT's are quoted in business days (exclude statutory holidays &amp; weekends).<br/>Samples received after 6bm or on weekends: TAT begins next business day</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAT's are quoted in business days (exclude statutory holidays & weekends).<br>Samples received after 6bm or on weekends: TAT begins next business day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| II: Utch Grout/Jud Lay, CC.       Email:         Resultations:       Resultations:         OReg 15304       Orber Regulations:         OReg 15304       Orber Regulations:         Santary       Resultations:         Table 1       Resultations:         Table 2       Ind/Com         Consection:       Orber Regulations:         Table 2       Ind/Com         Table 347/558 (3 by min TAT)       Semitary         Table 2       Ind/Com         Table 347/558 (3 by min TAT)       Semitary         Table 3       Option:         Santary       Pervoo         Table 3       Appx.         Santary       Ind/Com         Record 1       Orber:         Municipality:       Index         Appx.       Index         SamPLE IDENTIFICATION       SAMPLED         BH 2       552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RUSH TAT (Additional Charges May Apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Educations:     Sever By-Law:       0     Other Regulations:       0     Cher Regulations:       0     Contract       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Other Regulations:     Sever By-Law:       Table 1     ResePark Soil Texture:     Other Regulations:       Table 2     Induction     Samitary       Table 2     Induction     Samitary       Table 2     Aprilother     Minicipality:       Table 3     Aprilother     Minicipality:       Table 3     Aprilother     Minicipality:       Table 3     Aprilother     Minicipality:       Brance     Other:     Minicipality:       Minicipality:     Minicipality:     Minicipality:       Bill 2     SSAMPLED     SamPLED     Minicipality:       Bill 2     SSAMPLED     Minicipality:     Minicipality:       Bill 2     SSSAMPLED     Minicipality:     Minicipality:       Bill 2     SSS     I billiti32     S </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 1       RealPark Soil Texture:       Reg 347758 (3 by min TAT)         Table 2       Indicom       X cense         Table 3       Apr/Other X Med/um/Fine       Samtary         Table 3       Apr/Other X Med/um/Fine       Samtary         Table 4       Apr/Other X Med/um/Fine       Samtary         Table 5       Apr/Other X Med/um/Fine       Samtary         Stable 5       Apr/Other X Med/um/Fine       Samtary         Stable 5       Apr/Other X Med/um/Fine       Samtary         Samtary       Samtary       Samtary         Stable 6       Apr/Other X Med/um/Fine       Samtary         Samtary       ODWS Not Reportable Suite       Miniopality:         Minio 7       Samtary       Samtary         Samtary       Appx       Minio 7         Samtary       Samtary       Samtary         Samtary       Samtary       Samtary <td< td=""><td>M&amp;I SVOC PCI</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M&I SVOC PCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mathe     Appx.       Sali Volume     <350m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3     3       3     3       4     3       5     3       6     3       7     3       7     3       8     3       9     3       10     3       10     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RECORD OF SITE CONDITION (RSC)     VES     NO       RECORD OF SITE CONDITION     SAMPLE IDENTIFICATION     DATE     TIME       SAMPLE IDENTIFICATION     DATE     TIME     # OF       SAMPLE IDENTIFICATION     SAMPLED     SAMPLED     SAMPLED       SAMPLE IDENTIFICATION     SAMPLED     SAMPLED     MATRIX       SAMPLE IDENTIFICATION     SAMPLED     SAMPLED     SAMPLED       SAMPLE IDENTIFICATION     SAMPLED     SAMPLED     MATRIX       SAMPLE IDENTIFICATION     SAMPLED     SAMPLED     SAMPLED       SH 2 552     16/11/123     7     %     Metals Suite       SH 2 550     11/11/133     1     7     %       SH 2 550     1     1     7     %       SH 2 550     1     3     1     1       SH 2 550     1     3     7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CS<br>SAR-sol<br>4.g. SAR-sol<br>Afro<br>Afro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SAMPLE IDENTIFICATION<br>BH 2 556 15/11/22 3:00 6 Structures<br>BH 2 552 16/11/22 3:00 6 St/L Field Filtered (<br>BH 2 552 16/11/23 7:00 6 St/L Reveals)<br>BH 2 5510 171[133 4 5 4 5 6 5 6 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Janii<br>Janii<br>Janiyi<br>Juuvia<br>Luuvia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $BH \gtrsim 556$ $15/11/22$ $3:00$ $6$ $25L$ $4$ $BH \ge 552$ $16/11/22$ $3:00$ $6$ $25L$ $4$ $BH \ge 552$ $16/11/122$ $7:0$ $7:0$ $7:0$ $7:0$ $4$ $BH \ge 5522$ $16/11/123$ $1$ $7:0$ $7:0$ $7:0$ $7:0$ $BH \ge 5522$ $11/11/32$ $V$ $3:0$ $V$ $X$ $BH \ge 556$ $V$ $3:0$ $V$ $X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water Characteri<br>Press Same<br>Press Press |
| BH 2 552<br>BH 2 552<br>BH 2 554<br>BH 2 5510<br>BH 2 5510<br>BH 2 5510<br>BH 2 5510<br>HIII 32<br>BH 2 556<br>W 2 3<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BH 2 354<br>BH 2 552<br>BH 2 552<br>BH 2 552<br>BH 2 556<br>BH 2 557<br>BH | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BH 2552 U 1 1<br>BH 2550 HIII 32 V 3 V<br>BH 2556 U V 2 V 3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BH 2 5510 [711132 V 3 V<br>BH 2 556 U U J 2 55<br>V A 3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BH 1 556 W V 2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PTOH NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11 <th11< th="">         11         11         11<!--</td--><td></td></th11<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Observations/Comments/Special Instructions HOLD BH3 556, BH 1 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date: 11 / 17/20 (mm/dd/yy) Pink Copy - Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Relinquished by (NAME): Andrew Relinquished by (NAME): Andrew Relinquished by (NAME): (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date: 11 / 17/ 23 (mm/dd/yy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |







# CA14017-DEC22 R1

22-279-202, 1095 Kingston Rd, Pickering

Prepared for

Grounded Engineering Inc.



### First Page

| CLIENT DETAILS |                                         | LABORATORY DETAILS |                                           |
|----------------|-----------------------------------------|--------------------|-------------------------------------------|
| Client         | Grounded Engineering Inc.               | Project Specialist | Jill Campbell, B.Sc.,GISAS                |
|                |                                         | Laboratory         | SGS Canada Inc.                           |
| Address        | 1 Banigan Drive                         | Address            | 185 Concession St., Lakefield ON, K0L 2H0 |
|                | Toronto, Ontario                        |                    |                                           |
|                | M4H1G3. Canada                          |                    |                                           |
| Contact        | Vivi Tran                               | Telephone          | 2165                                      |
| Telephone      | 647-264-7928                            | Facsimile          | 705-652-6365                              |
| Facsimile      |                                         | Email              | jill.campbell@sgs.com                     |
| Email          | vtran@groundedeng.ca                    | SGS Reference      | CA14017-DEC22                             |
| Project        | 22-279-202, 1095 Kingston Rd, Pickering | Received           | 12/01/2022                                |
| Order Number   |                                         | Approved           | 12/07/2022                                |
| Samples        | Soil (1)                                | Report Number      | CA14017-DEC22 R1                          |
|                |                                         | Date Reported      | 01/11/2024                                |

### COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 8 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 030000

SIGNATORIES

Jill Campbell, B.Sc., GISAS

Jill Cumpbell

## TABLE OF CONTENTS

| First Page         | 1-2 |
|--------------------|-----|
| Index              | 3   |
| Results            | 4   |
| Exceedance Summary | 5   |
| QC Summary         | 6-8 |
| Legend             | 9   |
| Annexes            | 10  |



Client: Grounded Engineering Inc.

Project: 22-279-202, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

### Samplers: Andrew Kernerman

|                                                                  |          |      | <b>•</b> • • • • | 2            |
|------------------------------------------------------------------|----------|------|------------------|--------------|
| MATRIX: SOIL                                                     |          |      | Sample Numbe     |              |
|                                                                  |          |      | Sample Nam       |              |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UND | EFINED   |      | Sample Matr      |              |
|                                                                  |          |      | Sample Dat       | e 15/11/2022 |
| Parameter                                                        | Units    | RL   | L1               | Result       |
| BTEX                                                             |          |      |                  |              |
| Benzene                                                          | µg/g     | 0.02 | 0.17             | < 0.02       |
| Ethylbenzene                                                     | µg/g     | 0.05 | 1.6              | < 0.05       |
| Toluene                                                          | µg/g     | 0.05 | 6                | < 0.05       |
| Xylene (total)                                                   | µg/g     | 0.05 | 25               | < 0.05       |
| m/p-xylene                                                       | µg/g     | 0.05 |                  | < 0.05       |
| o-xylene                                                         | µg/g     | 0.05 |                  | < 0.05       |
| Metals and Inorganics                                            |          |      |                  |              |
| Moisture Content                                                 | %        | no   |                  | 10.8         |
| PHCs                                                             |          |      | 1                |              |
| F1 (C6-C10)                                                      | µg/g     | 10   | 65               | < 10         |
| F1-BTEX (C6-C10)                                                 | µg/g     | 10   | 65               | < 10         |
| F2 (C10-C16)                                                     | µg/g     | 10   | 150              | < 10         |
| F3 (C16-C34)                                                     | µg/g     | 50   | 1300             | < 50         |
| F4 (C34-C50)                                                     | hð/ð     | 50   | 5600             | < 50         |
| Chromatogram returned to baseline at nC50                        | Yes / No | no   |                  | YES          |



EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated



## QC SUMMARY

### Petroleum Hydrocarbons (F1)

## Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

| Parameter   | QC batch      | Units | RL | Method | Dup | olicate   | LC              | S/Spike Blank          |      | Matrix Spike / Ref. |     |                 |  |
|-------------|---------------|-------|----|--------|-----|-----------|-----------------|------------------------|------|---------------------|-----|-----------------|--|
|             | Reference     |       |    | Blank  | RPD | AC<br>(%) | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery   |     | ry Limits<br>%) |  |
|             |               |       |    |        |     |           | Recovery<br>(%) | Low                    | High | (%)                 | Low | High            |  |
| F1 (C6-C10) | GCM0031-DEC22 | µg/g  | 10 | <10    | ND  | 30        | 84              | 80                     | 120  | 84                  | 60  | 140             |  |

## Petroleum Hydrocarbons (F2-F4)

## Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

| Parameter    | QC batch      | Units | RL | Method | Duplicate |     | LC              | S/Spike Blank          |      | Matrix Spike / Ref. |     |                  |  |
|--------------|---------------|-------|----|--------|-----------|-----|-----------------|------------------------|------|---------------------|-----|------------------|--|
|              | Reference     |       |    | Blank  | RPD       | AC  | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery   |     | ery Limits<br>%) |  |
|              |               |       |    |        |           | (%) | Recovery<br>(%) | Low                    | High | (%)                 | Low | High             |  |
| F2 (C10-C16) | GCM0042-DEC22 | hð\ð  | 10 | <10    | ND        | 30  | 118             | 80                     | 120  | 107                 | 60  | 140              |  |
| F3 (C16-C34) | GCM0042-DEC22 | µg/g  | 50 | <50    | ND        | 30  | 118             | 80                     | 120  | 107                 | 60  | 140              |  |
| F4 (C34-C50) | GCM0042-DEC22 | µg/g  | 50 | <50    | ND        | 30  | 118             | 80                     | 120  | 107                 | 60  | 140              |  |



### QC SUMMARY

#### **Volatile Organics**

### Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

| Parameter    | QC batch      | Units | RL   | Method | Dup | licate | LC              | S/Spike Blank          |      | Matrix Spike / Ref. |                        |      |  |
|--------------|---------------|-------|------|--------|-----|--------|-----------------|------------------------|------|---------------------|------------------------|------|--|
|              | Reference     |       |      | Blank  | RPD | AC     | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery   | Recovery Limits<br>(%) |      |  |
|              |               |       |      |        |     | (%)    | Recovery<br>(%) | Low                    | High | (%)                 | Low                    | High |  |
| Benzene      | GCM0031-DEC22 | µg/g  | 0.02 | <0.02  | ND  | 50     | 81              | 60                     | 130  | 80                  | 50                     | 140  |  |
| Ethylbenzene | GCM0031-DEC22 | µg/g  | 0.05 | <0.05  | ND  | 50     | 78              | 60                     | 130  | 83                  | 50                     | 140  |  |
| m/p-xylene   | GCM0031-DEC22 | µg/g  | 0.05 | <0.05  | ND  | 50     | 77              | 60                     | 130  | 81                  | 50                     | 140  |  |
| o-xylene     | GCM0031-DEC22 | µg/g  | 0.05 | <0.05  | ND  | 50     | 78              | 60                     | 130  | 83                  | 50                     | 140  |  |
| Toluene      | GCM0031-DEC22 | µg/g  | 0.05 | <0.05  | ND  | 50     | 79              | 60                     | 130  | 82                  | 50                     | 140  |  |

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.



CA14017-DEC22 R1

QC SUMMARY

### LEGEND

### **FOOTNOTES**

NSS Insufficient sample for analysis.

- RL Reporting Limit.
  - Reporting limit raised.
  - ↓ Reporting limit lowered.
  - NA The sample was not analysed for this analyte
  - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

| Relinquished by (NAME):                                                 | Sampled By (NAME): | Observations/Comments/Special Instructions | 12    | 11                              | 10                                       | 9                                   | 8     | 7    | 6 -34 | 5              | 4 7      | 3     | 2 21  |         | 1 31        |                                                                                                                 |                 | Soil Volume                   | Table 1                                                 | X O.Reg 153/04         | Station of the    | Email: Utran @ G. CUN Mand ang. Ch                                                                                         | Phone:                                                                           |                                                                                                                                                       | Address:                       | Company:<br>Contact:                     |                     | Received By:<br>Received Date:<br>Received Time:                                  |
|-------------------------------------------------------------------------|--------------------|--------------------------------------------|-------|---------------------------------|------------------------------------------|-------------------------------------|-------|------|-------|----------------|----------|-------|-------|---------|-------------|-----------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|---------------------------------------------------------|------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------|---------------------|-----------------------------------------------------------------------------------|
| by (NAME                                                                |                    | Comments                                   | 1     |                                 |                                          |                                     |       |      | #     | BH 1           | 011 1    | +     | 1     | 24      | E<br>N      | SAMPLE IDENTIFICATION                                                                                           | RECORD OF SITE  |                               |                                                         | 153/04                 | and the second    | canle                                                                                                                      |                                                                                  |                                                                                                                                                       | Bar. C                         | VIUI TR                                  | REPORT INFORMATION  | In the                                                                            |
|                                                                         | Andra              | Special In                                 |       |                                 |                                          |                                     |       |      | 65    | 5              | 55       | 1     |       |         | 326         | DENTIFI                                                                                                         | OF SITE         | <350m3                        | Res/Park<br>  Ind/Com<br>  Agri/Other<br>  Appx.        |                        |                   | SOUND                                                                                                                      |                                                                                  | C                                                                                                                                                     | yan.                           | D                                        | INFORM              | 30                                                                                |
| rdran                                                                   | Ĕ                  | structions                                 |       |                                 |                                          |                                     |       |      | 6     | 5              | ¥        |       |       |         |             | CATION                                                                                                          | CONDITI         | >350m3                        | =                                                       |                        |                   | hectery                                                                                                                    |                                                                                  |                                                                                                                                                       | 10                             | ENGMELT<br>W                             | IATION              | - Bar C                                                                           |
| Andrew Reg New States and the southave here any ideal direction on same | ic/n-c             | HOLD                                       |       |                                 |                                          |                                     |       |      |       |                |          |       |       |         |             |                                                                                                                 | CONDITION (RSC) | Dm3                           | Soil Texture:<br>Coarse<br>Medium/Fine                  | O.Reg 406/19           | REG               | .cc                                                                                                                        |                                                                                  |                                                                                                                                                       |                                | 12 N. 3 T                                |                     | (mm/dd/yy)<br>min)                                                                |
| -Nex                                                                    | URWER              | Ð                                          |       |                                 |                                          |                                     |       |      | 4     | 1111           | e        | 1     | 16/11 |         | 15/11/22    | DATE<br>SAMPLED                                                                                                 | YES             |                               | PWQ0<br>CCME                                            | Other                  | REGULATIONS       | Email:                                                                                                                     | Phone:                                                                           | Address:                                                                                                                                              | Contact:                       | Company:                                 |                     | (V)                                                                               |
| MAL                                                                     | 1. A. 1.           | BHA                                        |       |                                 |                                          |                                     |       |      |       | ee<br>Re       |          |       | 13X   | 1 2 2   | 111         |                                                                                                                 |                 | WS Not R                      | PWQO                                                    | Other Regulations:     |                   |                                                                                                                            |                                                                                  |                                                                                                                                                       |                                | ne as Re                                 | INI                 |                                                                                   |
| I voli have h                                                           | 1.5                | 5                                          |       |                                 |                                          |                                     |       |      | 4     | K              |          | ╢     | ╢     |         | ()u.K       | TIME<br>SAMPLED                                                                                                 | NO              | ODWS Not Reportable *See note | Reg 347/558 (3 Day min TAT)<br>PWQO MMER<br>CCME Other: | ions:                  |                   |                                                                                                                            |                                                                                  |                                                                                                                                                       |                                | ✓(same as Report Information)<br>ompany: | OICE IN             | Received By (signatt<br>Custody Seal Preser<br>Custody Seal Intact:               |
| Signat                                                                  | Signature:         | 56,                                        |       | 1                               | 1                                        | 100 - 100<br>100 - 100<br>100 - 100 |       |      | 0)    |                |          |       |       |         | 5           | D BOTTLES                                                                                                       |                 | *See note                     | n TAT)                                                  | F.                     |                   | 11-11-11-11-11-11-11-11-11-11-11-11-11-                                                                                    |                                                                                  |                                                                                                                                                       |                                | mation)                                  | INVOICE INFORMATION | Received By (signature):<br>Custody Seal Present: Yes<br>Custody Seal Intact: Yes |
| ure:                                                                    | ure:               | BH                                         |       |                                 |                                          | 5                                   |       |      |       |                |          | 547   |       |         | -           | CONTRACTOR OF THE                                                                                               |                 |                               | Sanita                                                  | Sewer By-Law:          |                   |                                                                                                                            |                                                                                  |                                                                                                                                                       |                                |                                          | ION                 | It: Yes                                                                           |
|                                                                         | EX                 | P                                          |       | 100                             |                                          |                                     |       |      | ¢     | K              | 1        |       | Ħ     | - 1     | 511         | MATRIX                                                                                                          |                 |                               | 」Sanitary<br>〕Storm<br>icipality:                       | y-Law:                 |                   |                                                                                                                            |                                                                                  |                                                                                                                                                       |                                |                                          |                     | No No                                                                             |
| C                                                                       | K                  | 956                                        |       | an generation<br>and the second |                                          |                                     |       |      |       |                | to barro |       | *     | 3.      | 「「「         | Field Filtered ()                                                                                               |                 |                               |                                                         |                        |                   | Specify                                                                                                                    | RUSH T                                                                           | 571                                                                                                                                                   |                                | Quotation<br>Project #:                  |                     | Aboratory Information Section - Lab use                                           |
| Anandiing and transportation of samples (2) Submit                      |                    | u                                          | 「日本の  | 1.42                            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | -                                   |       |      | ×     |                | ×        | 1     |       | +       |             | Metals & Inorg<br>incl Cr/VI, CN,Hg pH,(B(HW<br>(CI, Na-water)<br>Full Metals Sui<br>ICP metals plus B(HWS-soil |                 |                               |                                                         | M & I                  |                   | Specify Due Date:                                                                                                          | RUSH TAT (Additional Charges May Apply):<br>PLEASE CONFIRM RUSH FEASIBILITY WITH | Regular TAT (5-7days)                                                                                                                                 | 123213                         | 56 #<br># no                             |                     | Tem                                                                               |
| nenortalion                                                             |                    |                                            | None. |                                 |                                          |                                     |       | il.  | 100   | 1024           | -<br>Par |       |       |         |             | ICP Metals only<br>Cr.Co.Cu.Pb.Mo.NI.Se.Ag.TI                                                                   | St              | ,As.Ba                        |                                                         |                        |                   | 9:<br>                                                                                                                     | itional C<br>RM RUS                                                              | ır TAT (5                                                                                                                                             |                                | 85 K-2                                   |                     | nation Section - Lab use                                                          |
| n eannae                                                                |                    |                                            |       |                                 |                                          |                                     |       |      | *     |                |          | *     | *     | 4       | _           | PAHs only<br>SVOCs<br>all incl PAHs, ABNs, CPs                                                                  |                 |                               |                                                         | SVOC                   |                   |                                                                                                                            | harges N<br>H FEASI                                                              | -7days)                                                                                                                                               |                                | 1                                        |                     | tion - La<br>Present:<br>Ipon Rece                                                |
| 171 Suhmis                                                              |                    | 13                                         |       | 16989                           |                                          |                                     |       |      |       |                |          | 100 C |       |         |             | PCBs Total                                                                                                      |                 | A                             | roclor                                                  | PCB                    | 12270             |                                                                                                                            | hay App<br>BILITY V                                                              |                                                                                                                                                       |                                | Real Providence                          |                     |                                                                                   |
| sion of same                                                            |                    |                                            |       |                                 |                                          |                                     |       |      |       | ×              |          | X     |       | ;       | 19330       | F1-F4 + BTEX                                                                                                    |                 |                               |                                                         | PHC                    | NALYSIS REQUESTED | <br>  z                                                                                                                    | 1 S                                                                              |                                                                                                                                                       |                                |                                          |                     | AZ ONY                                                                            |
|                                                                         |                    |                                            |       |                                 |                                          | 99322                               |       | 0000 |       | ×              |          | X     | •     | 1       | ¥.          | VOCs<br>all incl BTEX                                                                                           |                 |                               |                                                         | Voc                    | SIS R             | OTE: DR                                                                                                                    | T 1 Day                                                                          |                                                                                                                                                       | TURNA                          |                                          |                     | <b>S</b> age                                                                      |
| ate:                                                                    | Date: 1            |                                            |       |                                 | 和時代                                      |                                     |       |      |       |                |          |       |       |         | 8           | BTEX only Pesticides                                                                                            |                 |                               |                                                         | C Pest                 | EQUE              | INKING (F                                                                                                                  |                                                                                  |                                                                                                                                                       | TOUND 1                        |                                          |                     | Lie                                                                               |
| / /                                                                     | I.L                |                                            |       |                                 |                                          |                                     |       |      |       |                |          |       |       |         |             | Organochlorine or specify                                                                                       | othe            | er                            |                                                         | <u>*</u>               | STEL              | OTABLE)<br>WITH                                                                                                            | 2 Days     3 Days     4 Days       TATIVE PRIOR TO SUBMISSION                    | Sai                                                                                                                                                   | TURNAROUND TIME (TAT) REQUIRED |                                          | and the second      | Ice Pauls                                                                         |
| Him for com                                                             |                    | 11                                         |       |                                 | 1                                        |                                     |       |      |       |                |          | -     |       | +       |             |                                                                                                                 | - F.            |                               | <u></u>                                                 | Other                  |                   | SGS DRI                                                                                                                    | 3 Day                                                                            | r's are que<br>mples rece                                                                                                                             | T) REQU                        | P.O. #: YOT<br>Site Location/ID: 1015    |                     | 121                                                                               |
| 55                                                                      | 23                 |                                            |       |                                 | 4 - 342<br>2                             |                                     |       |      |       |                |          |       |       |         | -           | Sewer Use:                                                                                                      |                 | -                             |                                                         | Other (please specify) |                   | AMPLES                                                                                                                     |                                                                                  | ived after                                                                                                                                            | IRED                           | tion/ID:                                 |                     | an<br>San ta                                                                      |
| (mm/dd/                                                                 | (mm/dd/yy)         |                                            | -     |                                 |                                          |                                     |       | 100  |       |                |          |       |       | +       |             | Specify pkg:<br>Water Characteri<br>General Exte                                                                | ndec            |                               | kg                                                      | cify)                  |                   | TER CHA                                                                                                                    | ays                                                                              | 6pm or on                                                                                                                                             |                                |                                          |                     | F B                                                                               |
| yy)<br>res may app                                                      | yy)                |                                            |       |                                 |                                          |                                     |       | New  |       |                |          |       |       |         |             | Discass<br>Discass<br>Discass<br>Discass                                                                        | LVUL            | Metals                        |                                                         | SPLP TCLP              |                   | IN OF CU                                                                                                                   |                                                                                  | s (exclude<br>weekends                                                                                                                                | د                              | racion                                   |                     | 1 14(<br>1 14(                                                                    |
| Date: 11 / 17-122 (mm/dd/yy) Yellow & White Copy - SGS                  | Pir                |                                            |       |                                 |                                          |                                     |       |      | 0     |                |          |       |       |         | State State | C PCB<br>C B(a)P<br>C ABN<br>C ABN<br>C Ignit.                                                                  |                 |                               | Specify<br>tests                                        | TCLP                   |                   | NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED<br>WITH SGS DRINKING WATER CHAIN OF CUSTODY |                                                                                  | TAT's are quoted in business days (exclude statutory holidays & weekends).<br>Samples received after 6pm or on weekends: TAT begins next business day |                                | n Rd.                                    |                     | CA 14017- DEC22                                                                   |
| llow & Wh                                                               | Pink Copy - Client |                                            |       | 1                               |                                          |                                     | 6 H 2 |      | N NO  | 34<br>34<br>35 | 1.1.1.24 |       |       |         | 1 IVO       |                                                                                                                 | COMP            | COMMENTS.                     |                                                         |                        |                   | MUST BE                                                                                                                    |                                                                                  | ins next bu                                                                                                                                           |                                |                                          |                     | Dec                                                                               |
| te Copy -                                                               | lient              |                                            |       |                                 |                                          |                                     |       |      | Holit |                |          |       |       | includ. | hold        |                                                                                                                 | T N             |                               |                                                         |                        |                   | SUBMI                                                                                                                      |                                                                                  | weekend<br>siness o                                                                                                                                   |                                | Pickerny                                 |                     | Co Co                                                                             |







# CA40183-DEC22 R1

22-279, 1095 Kingston Rd, Pickering

Prepared for

Grounded Engineering Inc.



### First Page

| CLIENT DETAILS | 8                                   | LABORATORY DETAIL  | S                                         |
|----------------|-------------------------------------|--------------------|-------------------------------------------|
| Client         | Grounded Engineering Inc.           | Project Specialist | Jill Campbell, B.Sc.,GISAS                |
|                |                                     | Laboratory         | SGS Canada Inc.                           |
| Address        | 1 Banigan Drive                     | Address            | 185 Concession St., Lakefield ON, K0L 2H0 |
|                | Toronto, Ontario                    |                    |                                           |
|                | M4H1G3. Canada                      |                    |                                           |
| Contact        | Vivi Tran                           | Telephone          | 2165                                      |
| Telephone      | 647-264-7928                        | Facsimile          | 705-652-6365                              |
| Facsimile      |                                     | Email              | jill.campbell@sgs.com                     |
| Email          | vtran@groundedeng.ca                | SGS Reference      | CA40183-DEC22                             |
| Project        | 22-279, 1095 Kingston Rd, Pickering | Received           | 12/16/2022                                |
| Order Number   |                                     | Approved           | 12/20/2022                                |
| Samples        | Soil (5)                            | Report Number      | CA40183-DEC22 R1                          |
|                |                                     | Date Reported      | 01/11/2024                                |

### COMMENTS

Temperature of Sample upon Receipt: 12 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:029987

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell



### TABLE OF CONTENTS

| First Page | 1-2 |
|------------|-----|
| Index      | 3   |
| Results    | 4   |
| QC Summary | 5   |
| Legend     | 6   |
| Annexes    | 7   |

| <b>CCC</b>   |          |      |                                   | FINAL I    | REPORT     |            |              | CA40183-DEC22 R1          |                          |  |  |  |  |  |
|--------------|----------|------|-----------------------------------|------------|------------|------------|--------------|---------------------------|--------------------------|--|--|--|--|--|
|              |          |      | Client: Grounded Engineering Inc. |            |            |            |              |                           |                          |  |  |  |  |  |
|              |          |      |                                   |            |            |            | Pro          | <b>bject:</b> 22-279, 109 | 5 Kingston Rd, Pickering |  |  |  |  |  |
|              |          |      |                                   |            |            |            | Project Mana | ager: Vivi Tran           |                          |  |  |  |  |  |
|              |          |      |                                   |            |            |            | Samp         | olers: Vivi Tran          |                          |  |  |  |  |  |
| MATRIX: SOIL |          |      | Sample Number                     | 8          | 9          | 10         | 11           | 12                        |                          |  |  |  |  |  |
|              |          |      | Sample Name                       | BH1A SS1   | BH1A SS2   | BH1B SS1   | BH1B SS2     | DUP-2                     |                          |  |  |  |  |  |
|              |          |      | Sample Matrix                     | Soil       | Soil       | Soil       | Soil         | Soil                      |                          |  |  |  |  |  |
|              |          |      | Sample Date                       | 16/12/2022 | 16/12/2022 | 16/12/2022 | 16/12/2022   | 16/12/2022                |                          |  |  |  |  |  |
| Parameter    | Units    | RL   |                                   | Result     | Result     | Result     | Result       | Result                    |                          |  |  |  |  |  |
| Other (ORP)  |          |      |                                   |            |            |            |              |                           |                          |  |  |  |  |  |
| рН           | pH Units | 0.05 |                                   | 8.13       | 8.07       | 8.10       | 8.04         | 8.01                      |                          |  |  |  |  |  |



### QC SUMMARY

#### pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-001

| Parameter | QC batch      | Units    | RL   | Method | Duj | olicate | LC              | S/Spike Blank          |      | Matrix Spike / Ref. |         |                 |
|-----------|---------------|----------|------|--------|-----|---------|-----------------|------------------------|------|---------------------|---------|-----------------|
|           | Reference     |          |      | Blank  | RPD | AC      | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery   | Recover | ry Limits<br>6) |
|           |               |          |      |        |     | (%)     | Recovery<br>(%) | Low                    | High | (%)                 | Low     | High            |
| рН        | ARD0099-DEC22 | pH Units | 0.05 |        | 0   | 20      | 100             | 80                     | 120  |                     |         |                 |

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

### LEGEND

### **FOOTNOTES**

NSS Insufficient sample for analysis.

- RL Reporting Limit.
  - Reporting limit raised.
  - ↓ Reporting limit lowered.
  - NA The sample was not analysed for this analyte
  - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

| Page / of /                                                                                                                                     | -                                            | LAB LIMS #. CA40183 -DE22                                   |                     |                                | Kingston Rd.      | 1. 01                          | TAT's are quoted in business days (exclude statulory tondays & weekends).<br>Samples received after 6pm or on weekends: TAT begins next business day |                                                                                   | NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED | ~                                        |                        |                                                                                       | 1                                     | COMMENTS: |                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            | Pink Copy - Client           | Yellow & White Copy - SGS                                             | this form or he retained on file in |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|---------------------|--------------------------------|-------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|------------------------|---------------------------------------------------------------------------------------|---------------------------------------|-----------|---------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------|---|---|------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|--------------------------------------------|------------------------------|-----------------------------------------------------------------------|-------------------------------------|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                           |                                              | Ğ                                                           |                     |                                | Kin               | -Yari                          | ude statulo<br>ends: TAT                                                                                                                             |                                                                                   | DNSUMPT                                                                        | CUSTOD                                   | SPLP TCL P             | ity Specify<br>s tests                                                                |                                       |           | P CPCB                                                                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            |                              |                                                                       | no negarion                         |
|                                                                                                                                                 |                                              | AB LIMS ⊭                                                   |                     | A STATE                        | 2101              | DI                             | days (exclin                                                                                                                                         |                                                                                   | HUMAN CO                                                                       | CHAIN OF                                 | SPL                    | 1.1.1.1.1.1.1.1                                                                       |                                       | papua     | Water Character<br>Seneral                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1          |           |   |   |                                          | _ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            | (mm/dd/yy)                   | (vv/bb/                                                               | I f f mon                           |
|                                                                                                                                                 |                                              |                                                             |                     |                                |                   | +                              | business<br>fter 6pm o                                                                                                                               | 4 Days                                                                            | ES FOR H                                                                       | WATER                                    | s specify)             |                                                                                       | 57 <u>0</u> 40                        | -         | Sewer Use:<br>Specify pkg:<br>Specify filter                                    | 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            | nm)                          | nm)                                                                   | of unrely Si                        |
| 1                                                                                                                                               |                                              | •                                                           |                     | 44                             | Site Location/ID: | QUIRED                         | quoted in<br>received a                                                                                                                              | ays                                                                               | ER SAMPL                                                                       | DRINKING                                 | Other (please specify) |                                                                                       |                                       | 1         |                                                                                 | 100         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |            |           |   | + |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            | 22                           | 27                                                                    |                                     |
| a substan                                                                                                                                       | c                                            | I CE K                                                      |                     | P.O.#:                         | Site L            | TURNAROUND TIME (TAT) REQUIRED | TAT's are<br>Samples                                                                                                                                 | RUSH TAT (Additional Charges May Apply):                                          | LE) WATE                                                                       |                                          |                        |                                                                                       |                                       | 4         |                                                                                 | 2           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X          | ×          | 2         |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            | 191                          | 161                                                                   | anization for                       |
| 1                                                                                                                                               |                                              | 53                                                          |                     |                                |                   | D TIME                         |                                                                                                                                                      | 2 Day                                                                             | G (POTAB                                                                       | REQUESTED                                | Pest                   |                                                                                       |                                       | y other   | esticides                                                                       | 0.0537-0000 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |            | ×         |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            | 121                          | 10                                                                    | due horof                           |
|                                                                                                                                                 |                                              |                                                             |                     |                                |                   | NUONN                          |                                                                                                                                                      | 1 Day                                                                             | DRINKING                                                                       | RFOI                                     | VOC                    |                                                                                       |                                       |           | BTEX only                                                                       | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           | - |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            | Date:                        | Date:                                                                 | DOC is cone                         |
| 361                                                                                                                                             |                                              | 12 Type:                                                    |                     |                                |                   | TURN                           |                                                                                                                                                      | CS RFP                                                                            | *NOTE:                                                                         | ANAI YSIS                                | 0                      |                                                                                       |                                       |           | Partex<br>NOCS<br>NOCS<br>Partex<br>NOCS                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            |                              |                                                                       | o of onlow to                       |
| 19-672-00                                                                                                                                       | e only                                       | 122                                                         |                     |                                |                   |                                |                                                                                                                                                      | ply):<br>WITH S                                                                   |                                                                                | ANAI                                     | B PHC                  |                                                                                       |                                       |           | F1-F4 + BTEX                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            |                              |                                                                       |                                     |
| 060 Fax: 5                                                                                                                                      | Lab use                                      | t: Yes                                                      |                     |                                | 0                 |                                |                                                                                                                                                      | s May Ap                                                                          |                                                                                |                                          | C PCB                  | IN THE PROPERTY OF THE                                                                | Aroc                                  |           | SVOCS<br>BI incl PAHs, ABNs, CPs<br>CBS Total                                   | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            | 100                          |                                                                       | 1 0 101                             |
| 377-848-80                                                                                                                                      | ction -                                      | nt Present<br>Upon Re                                       |                     | 5                              | - 279             |                                | (5-7days)                                                                                                                                            | Charges<br>SH FFAS                                                                |                                                                                |                                          | SVOC                   |                                                                                       |                                       | 17'4'0'11 | Vino sHAq                                                                       | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            |                              | - 11-3                                                                |                                     |
| oll Free: 8                                                                                                                                     | ation Se                                     | Cooling Agent Present: Yes                                  |                     |                                | 12                |                                | Regular TAT (5-7days)                                                                                                                                | dditional                                                                         | ate:                                                                           |                                          |                        | 1'Cq'                                                                                 | 3,98,68,2 <i>f</i>                    | 'as K     | Full Metals plus B(HWS-so<br>CP Metals plus B(HWS-so<br>CP Metals plus B(HWS-so | 1           | and the second s | 1          | 1000       |           |   |   |                                          |   | 1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |          | 1634                                       |                              | h                                                                     | -                                   |
| 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361                                                                                          | aboratory Information Section - Lab use only | Ŭ<br>Te                                                     |                     | Quotation #:                   | t#:               |                                | Regu                                                                                                                                                 | RUSH TAT (Additional Charges May Apply):<br>PI FASE CONFIRM RUSH FFASIRII ITY WIT | Snecify Due Date:                                                              |                                          | M &                    |                                                                                       | (lios-AA2,                            | AS)'EC    | Metals & Inor<br>incl crVI, CU,Hg pH,(B(HV<br>(Cl, Na-water)<br>(Cl, Na-water)  | 122         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            |                              | g                                                                     |                                     |
| ne: 519-6                                                                                                                                       | oratory                                      |                                                             |                     | Quota                          | Project #:        | 110                            |                                                                                                                                                      |                                                                                   | Sneci                                                                          |                                          | 1                      |                                                                                       | 1.1.1.1.1.1.1                         | 12.7      | )<br>) bereti Filtered                                                          | 1.1.11/-0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -12        |            |           |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            | 3                            |                                                                       |                                     |
| SE 258 Pho                                                                                                                                      | 2 Lab                                        |                                                             |                     |                                |                   | 1                              |                                                                                                                                                      |                                                                                   |                                                                                |                                          | Sewer By-Law           | Municipality:                                                                         |                                       |           | MATRIX                                                                          | 1105        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |            |           | - |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | a titu t |                                            | Main                         | 1.11                                                                  |                                     |
| ondon, ON, N6                                                                                                                                   | sianature):                                  | Custody Seal Present: Yes No<br>Custody Seal Intact: Yes No | RMATION             | tion)                          |                   |                                |                                                                                                                                                      |                                                                                   | -                                                                              |                                          | Sawar                  |                                                                                       | e note                                |           | # OF<br>BOTTLES                                                                 | -           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |            | 7         |   |   |                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00 |          |                                            | Signature:                   | Signature:                                                            |                                     |
| ortium Court, L                                                                                                                                 | Received Bv (signature):                     | Custody Seal<br>Custody Seal                                | INVOICE INFORMATION | sport Informa                  | The Party of      |                                |                                                                                                                                                      |                                                                                   |                                                                                |                                          | ione.                  | Reg 347/558 (3 Day min TAT)           PWQO         MMER           CCME         Other: | MISA<br>ODWS Not Reportable *See note | ON        | TIME                                                                            | 16:00       | N. North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |            | V         |   |   | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |                                            |                              | 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                               |                                     |
| - London: 657 Consortium Court, London, ON, NGF 298 Phone:                                                                                      |                                              |                                                             | INI                 | X (same as Report Information) | Company:          | Contact:                       | Address:                                                                                                                                             |                                                                                   | Phone:                                                                         | <i>CO</i> / Email:<br>REGULATIONS        | Other Regulations:     | Reg 347/558                                                                           | MISA<br>ODWS Not F                    |           | DATE                                                                            | 12/16/22    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            | Y         |   |   | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |   | A CONTRACTOR OF A CONTRACTOR |      |          |                                            | a su                         | VOW STU ST                                                            |                                     |
| - London, ON, NGZ28P Phone: 517 Consolution: 00 Concession 34, Landon, ON, NGZ28P Phone: 519-672-4500 Tail Free: 877-848-8060 Fax: 519-672-0361 | Bereived By                                  |                                                             | REPORT INFORMATION  | Company: Explinedic fugitating | I / MI            | Sanalan Dr                     | nto, oN, MUHIU3                                                                                                                                      | le:                                                                               | 1.1                                                                            | Email: VHTANO OLDUNOU UNG. CO E<br>REGUI | O.Reg 153/04           | Res/Park                                                                              | ame                                   | ECC       | SAMPLE IDENTIFICATION                                                           | BHIA SSI    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 RH18 551 | 4 BHIB 552 | 5 DUP - 2 | 9 | 7 | 80                                       | 0 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11   | 12       | Observations/Comments/Special Instructions | Sampled By (NAME): UIUI TRAN | Relinquished by (NAME): And Edge 1 16 2 (mm/dd/yr) reliow & White Coo | Tatas Sichmission of samples to SCS |







# CA40184-DEC22 R1

22-279, 1095 Kingston Rd, Pickering

Prepared for

Grounded Engineering Inc.



### First Page

| CLIENT DETAILS |                                     | LABORATORY DETAILS |                                           |
|----------------|-------------------------------------|--------------------|-------------------------------------------|
| Client         | Grounded Engineering Inc.           | Project Specialist | Jill Campbell, B.Sc.,GISAS                |
|                |                                     | Laboratory         | SGS Canada Inc.                           |
| Address        | 1 Banigan Drive                     | Address            | 185 Concession St., Lakefield ON, K0L 2H0 |
|                | Toronto, Ontario                    |                    |                                           |
|                | M4H1G3. Canada                      |                    |                                           |
| Contact        | Vivi Tran                           | Telephone          | 2165                                      |
| Telephone      | 647-264-7928                        | Facsimile          | 705-652-6365                              |
| Facsimile      |                                     | Email              | jill.campbell@sgs.com                     |
| Email          | vtran@groundedeng.ca                | SGS Reference      | CA40184-DEC22                             |
| Project        | 22-279, 1095 Kingston Rd, Pickering | Received           | 12/16/2022                                |
| Order Number   |                                     | Approved           | 12/22/2022                                |
| Samples        | Soil (10)                           | Report Number      | CA40184-DEC22 R1                          |
|                |                                     | Date Reported      | 01/11/2024                                |

### COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 12 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:028523

SIGNATORIES

Jill Campbell, B.Sc., GISAS

Jill Cumpbell

## TABLE OF CONTENTS

| First Page         | 1-2 |
|--------------------|-----|
| Index              | 3   |
| Results            | 4-5 |
| Exceedance Summary | 6   |
| QC Summary         | 7-8 |
| Legend             | 9   |
| Annexes            | 10  |



### Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

Samplers: Vivi Tran

| MATRIX: SOIL                                                    |          |    | Sample Number | 8             | 9             | 10            | 11         | 12            | 13            | 14         | 15            |
|-----------------------------------------------------------------|----------|----|---------------|---------------|---------------|---------------|------------|---------------|---------------|------------|---------------|
|                                                                 |          |    | Sample Name   | BH2A - SS1    | BH2A - SS2 ON | BH2A - SS3 ON | BH2B - SS1 | BH2B - SS2 ON | BH2B - SS3 ON | BH2C - SS1 | BH2C - SS2 ON |
|                                                                 |          |    |               |               | HOLD          | HOLD          |            | HOLD          | HOLD          |            | HOLD          |
| L1 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UN | DEFINED  |    | Sample Matrix | Soil          | Soil          | Soil          | Soil       | Soil          | Soil          | Soil       | Soil          |
|                                                                 |          |    | Sample Date   | 16/12/2022    | 16/12/2022    | 16/12/2022    | 16/12/2022 | 16/12/2022    | 16/12/2022    | 16/12/2022 | 16/12/2022    |
| Parameter                                                       | Units    | RL | L1            | Result        | Result        | Result        | Result     | Result        | Result        | Result     | Result        |
| Metals and Inorganics                                           |          |    |               |               |               |               |            |               |               |            |               |
| Moisture Content                                                | %        | no |               | 12.0          |               |               | 13.4       |               |               | 11.8       |               |
| PHCs                                                            |          |    |               |               |               |               |            |               |               |            |               |
| F1 (C6-C10)                                                     | µg/g     | 10 | 65            | < 10          |               |               | < 10       |               |               | < 10       |               |
| F1-BTEX (C6-C10)                                                | µg/g     | 10 | 65            | < 10          |               |               | < 10       |               |               | < 10       |               |
| F2 (C10-C16)                                                    | µg/g     | 10 | 150           | < 10          |               |               | < 10       |               |               | < 10       |               |
| F3 (C16-C34)                                                    | µg/g     | 50 | 1300          | < 50          |               |               | 63         |               |               | 54         |               |
| F4 (C34-C50)                                                    | µg/g     | 50 | 5600          | < 50          |               |               | 77         |               |               | < 50       |               |
| Chromatogram returned to baseline at nC50                       | Yes / No | no |               | YES           |               |               | YES        |               |               | YES        |               |
| MATRIX: SOIL                                                    |          |    | Sample Number | 16            | 17            |               |            |               |               |            |               |
|                                                                 |          |    | Sample Name   | BH2C - SS3 ON | DUP-1         |               |            |               |               |            |               |
|                                                                 |          |    |               | HOLD          |               |               |            |               |               |            |               |
|                                                                 |          |    | Sample Matrix | Soil          | Soil          |               |            |               |               |            |               |
|                                                                 |          |    | Sample Date   | 16/12/2022    | 16/12/2022    |               |            |               |               |            |               |
| Parameter                                                       | Units    | RL |               | Result        | Result        |               |            |               |               |            |               |
| Metals and Inorganics                                           |          |    |               |               |               |               |            |               |               |            |               |
| Moisture Content                                                | %        | no |               |               | 13.3          |               |            |               |               |            |               |
| PHCs                                                            |          |    | I             |               |               |               |            |               |               |            |               |
| F1 (C6-C10)                                                     | µg/g     | 10 | 65            |               | < 10          |               |            |               |               |            |               |
| F1-BTEX (C6-C10)                                                | µg/g     | 10 | 65            |               | < 10          |               |            |               |               |            |               |
| F2 (C10-C16)                                                    | µg/g     | 10 | 150           |               | < 10          |               |            |               |               |            |               |
| F3 (C16-C34)                                                    | µg/g     | 50 | 1300          |               | < 50          |               |            |               |               |            |               |

| CCC                                       |          |    |                              | FINAL F                     | REPORT      | CA40184-DEC22 R1                             |
|-------------------------------------------|----------|----|------------------------------|-----------------------------|-------------|----------------------------------------------|
|                                           |          |    |                              |                             |             | Client: Grounded Engineering Inc.            |
|                                           |          |    |                              |                             |             | Project: 22-279, 1095 Kingston Rd, Pickering |
|                                           |          |    |                              |                             |             | Project Manager: Vivi Tran                   |
|                                           |          |    |                              |                             |             | Samplers: Vivi Tran                          |
| MATRIX: SOIL                              |          |    | Sample Number<br>Sample Name | 16<br>BH2C - SS3 ON<br>HOLD | 17<br>DUP-1 |                                              |
|                                           |          |    | Sample Matrix                | Soil                        | Soil        |                                              |
|                                           |          |    | Sample Date                  | 16/12/2022                  | 16/12/2022  |                                              |
| Parameter                                 | Units    | RL |                              | Result                      | Result      |                                              |
| PHCs (continued)                          |          |    |                              |                             |             |                                              |
| F4 (C34-C50)                              | µg/g     | 50 | 5600                         |                             | < 50        |                                              |
| Chromatogram returned to baseline at nC50 | Yes / No | no |                              |                             | YES         |                                              |



EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated



## QC SUMMARY

### Petroleum Hydrocarbons (F1)

## Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

| Parameter   | QC batch      | Units | RL | Method | Dup | licate | LC              | S/Spike Blank |                   | М                 | latrix Spike / Ref | :               |
|-------------|---------------|-------|----|--------|-----|--------|-----------------|---------------|-------------------|-------------------|--------------------|-----------------|
|             | Reference     |       |    | Blank  | RPD | AC     | Spike           |               | əry Limits<br>(%) | Spike<br>Recovery | Recove             | ry Limits<br>6) |
|             |               |       |    |        |     | (%)    | Recovery<br>(%) | Low           | High              | (%)               | Low                | High            |
| F1 (C6-C10) | GCM0266-DEC22 | hð\ð  | 10 | <10    | ND  | 30     | 90              | 80            | 120               | 82                | 60                 | 140             |

## Petroleum Hydrocarbons (F2-F4)

## Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

| Parameter    | QC batch      | Units | RL | Method | Dup | olicate | LC              | S/Spike Blank |                 | м                 | atrix Spike / Ref |                 |
|--------------|---------------|-------|----|--------|-----|---------|-----------------|---------------|-----------------|-------------------|-------------------|-----------------|
|              | Reference     |       |    | Blank  | RPD | AC      | Spike           | Recove        | ry Limits<br>%) | Spike<br>Recovery | Recover<br>(%     | ry Limits<br>%) |
|              |               |       |    |        |     | (%)     | Recovery<br>(%) | Low           | High            | (%)               | Low               | High            |
| F2 (C10-C16) | GCM0253-DEC22 | hð\ð  | 10 | <10    | ND  | 30      | 113             | 80            | 120             | 113               | 60                | 140             |
| F3 (C16-C34) | GCM0253-DEC22 | µg/g  | 50 | <50    | ND  | 30      | 113             | 80            | 120             | 113               | 60                | 140             |
| F4 (C34-C50) | GCM0253-DEC22 | µg/g  | 50 | <50    | ND  | 30      | 113             | 80            | 120             | 113               | 60                | 140             |



#### QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

### LEGEND

### **FOOTNOTES**

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

| Received By:     Received By (signal rescived By (signal rescived Date:     Received Date:     Received By (signal rescived By (signal rescived Time:       Received Time:     The Land (munddyy)     Custody Seal Press       Received Time:     The Land (munddyy)     Custody Seal Press       Received Time:     The Land (munddyy)     Custody Seal Intact       Received Time:     The Land (munddyy)     Custody Seal Intact       Company:     EPORT INFORMATION     INVOICE INFORMATION       Company:     Eport Information     Custody Seal Intact       Address:     Land (munddynd)     Company:       Math I b     Muth I b     Address:       Phone:     Address:     Address: | Received By (signature):                                            | the second | The second |                                                     | - WE I 0000-                                         | 9-6/2-4500 Ioll Free: 8//-848-8060 Fax: 519-6/2-0361 | の時間                          | 1.1        | State State State State                                                                                                     |                                                | A STATE AND A STATE AND A                | rage                             | je / of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:     1. 16 / 2 (mm/dd/yy)       Time:     1. 16 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Laboratory Information Section - Lab use only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Section                                           | - Lab use                                            | only                                                 |                              |            | 0                                                                                                                           |                                                |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| w. Growndid Enginariug & (same as<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Custody Seal Present: Yes<br>Custody Seal Intact: Yes               | nt: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coolin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cooling Agent Present: Yes V                        | ant: Yes                                             | 2 2                                                  | Type:                        | 1 68       | j.                                                                                                                          | LA                                             | B LIMS #: O                              | DAYOU                            | LABLINS # CAYOL84 - Deezz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| V. Urounded Engineering<br>VIVI Trave<br>I Bengran Dr., Torentro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INVOICE INFORMATION                                                 | NOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      |                                                      |                              |            |                                                                                                                             |                                                |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| I Bengran Dr, Tororth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eport Information)                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quotation #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 10                                                | 07                                                   |                                                      |                              |            | P.O. #:                                                                                                                     | 100 I PO                                       | L                                        | T.                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H1637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - IUJG01 #-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                   | 1-1                                                  |                                                      | TURNARC                      | IMIT ONU   | TURNAROUND TIME (TAT) REQUIRED                                                                                              |                                                | ~                                        | darshun                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| le:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Kegular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kegular TAT (5-7days)                               | s)                                                   |                                                      |                              |            | TAT's are quoted in business days (exclude statutory holidays<br>Samples received after 6pm or on weekends: TAT begins next | in business da<br>l after 6pm or c             | ys (exclude :                            | statutory ho<br>s: TAT begir     | TAT's are quoted in business days (exclude statutory holidays & weekends).<br>Samples received after 6pm or on weekends: TAT begins next business day.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fax: Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RUSH TAT (Additional Charges May Apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ional Charg                                         | es May Ap,<br>ASIBILITY                              | ply):<br>WITH SGS                                    | T Day<br>REPRESEN            | / 2 Days   | IVS 3 Days PRIOR TO SUBM                                                                                                    | 4 Days                                         |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Email: V+10100 Groundiding. Con Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Specify Due Date:_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                      | ×                                                    | OTE: DRIN                    | KING (POT) | ABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC<br>WITH SGS DRINKING WATER CHAIN OF CUSTODY                                        | PLES FOR HU                                    | MAN CONSI<br>HAIN OF CUS                 | UMPTION N<br>STODY               | NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED<br>WITH SGS DRINKING WATER CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Prese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | ANALYSIS REQUESTED                                   | SIS RE                       | QUES'      | <b>TED</b>                                                                                                                  |                                                |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| X O.Reg 153/04 O.Reg 406/19 Other Regulations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tions:                                                              | Sewer By-Law:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M&I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SV                                                  | SVOC PCB                                             | 3 PHC                                                | VOC                          | Pest       | Other                                                                                                                       | (please specify)                               | SPLP 1                                   | TCLP                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Res/Park     Soil Texture:       Ind/Com     Coarse       Agri/Other     Medium/Fine       Appx.     >350m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reg 347/558 (3 Day min TAT)<br>PWQO C MMER<br>CCME C Other:<br>MISA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,bD,8,98,88,8                                       | Aroclor                                              |                                                      |                              |            |                                                                                                                             |                                                | Specify Specify Specify Specify Specify  | Specify<br>tests                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ORD OF SITE CONDITION (RSC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ON []                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | insi<br>a,oa.(a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A,d2 1                                              |                                                      |                                                      |                              | other      |                                                                                                                             |                                                |                                          |                                  | COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAMPLE IDENTIFICATION SAMPLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIME # OF<br>SAMPLED BOTTLE                                         | # OF<br>BOTTLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Field Filtered ()<br>Metals & Inorg<br>Incl.cvt.cvt.gp.H.(B(HW<br>(Cl. Na-walet)<br>(Cl. Na-walet)<br>Full Metals plus B(HWS-soi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PAHS only<br>Cr.Co.Cu.Pb.Mo.Ni.Se.Ag.T<br>PAHS only | PCBs Total<br>all incl PAHs, ABNs, CPs<br>PCBs Total | <b>F1-F4 + BTEX</b><br>F1-F4 + BTEX                  | NO BIEX<br>NOCS<br>BIEX ONIY | Pesticides |                                                                                                                             | Sewer Use:<br>Specify pkg:<br>Water Characteri | Dioxane<br>Dioxane<br>Dioxane<br>Dioxane | DPCB<br>DB(a)P<br>DABN<br>Danit. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BH1A-SSI 12/16/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.00 3                                                             | Soul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | X                                                    |                              | 1          |                                                                                                                             |                                                |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BH1A - 55 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | X                                                    |                              |            |                                                                                                                             |                                                |                                          | 4                                | on hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BHZA-553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A 10 10                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | X                                                    |                              |            |                                                                                                                             |                                                |                                          |                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BHZB SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | X                                                    |                              |            |                                                                                                                             |                                                |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BHZB 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | X                                                    |                              |            |                                                                                                                             |                                                |                                          |                                  | on held                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BHZB SSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | ×                                                    |                              |            |                                                                                                                             |                                                |                                          |                                  | in hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BHZE SSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | ×                                                    |                              |            |                                                                                                                             |                                                |                                          |                                  | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - |
| BHZC SSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | ×                                                    |                              |            |                                                                                                                             |                                                |                                          | 9                                | on hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BHZC SS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | ×.                                                   |                              |            |                                                                                                                             |                                                |                                          | 9                                | on hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DUP-1 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                   | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      | *                                                    |                              |            |                                                                                                                             |                                                |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12<br>Observations/Comments/Special Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                      |                                                      |                              |            |                                                                                                                             |                                                |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sampled By (NAME): UUL TRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Signature:                                                          | ure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                      |                                                      | Date:                        | e: D       | 16, 22                                                                                                                      | (mm/dd/yy)                                     | d/yy)                                    | Pink                             | Pink Copy - Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Relinquished by (NAME): Any Kwy Kernerne signature: (CR) [Date: 12, 16, 22 (mm/dd/yr) [Vellow & While Copy-SGS]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Signature:                                                          | ture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (cf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | の中に記                                                 |                                                      | Dat                          | e: 12      | 1 16, 22                                                                                                                    | 2 (mm/d                                        | d/yy)                                    | Yell                             | ow & White Copy - SGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |







# CA40185-DEC22 R1

22-279, 1095 Kingston Rd, Pickering

Prepared for

Grounded Engineering Inc.



### First Page

| CLIENT DETAILS |                                     | LABORATORY DETAILS |                                           |
|----------------|-------------------------------------|--------------------|-------------------------------------------|
| Client         | Grounded Engineering Inc.           | Project Specialist | Brad Moore Hon. B.Sc                      |
|                |                                     | Laboratory         | SGS Canada Inc.                           |
| Address        | 1 Banigan Drive                     | Address            | 185 Concession St., Lakefield ON, K0L 2H0 |
|                | Toronto, Ontario                    |                    |                                           |
|                | M4H1G3. Canada                      |                    |                                           |
| Contact        | Vivi Tran                           | Telephone          | 705-652-2143                              |
| Telephone      | 647-264-7928                        | Facsimile          | 705-652-6365                              |
| Facsimile      |                                     | Email              | brad.moore@sgs.com                        |
| Email          | vtran@groundedeng.ca                | SGS Reference      | CA40185-DEC22                             |
| Project        | 22-279, 1095 Kingston Rd, Pickering | Received           | 12/16/2022                                |
| Order Number   |                                     | Approved           | 12/23/2022                                |
| Samples        | Ground Water (5)                    | Report Number      | CA40185-DEC22 R1                          |
|                |                                     | Date Reported      | 01/11/2024                                |

### COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 028522

SIGNATORIES





## TABLE OF CONTENTS

| First Page           | 1     |
|----------------------|-------|
| Index                | 2     |
| Results              |       |
| Exceedance Summary   | 9     |
| Holding Time Summary | 10-11 |
| QC Summary           | 12-20 |
| Legend               | 21    |
| Annexes              |       |



### Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

Samplers: Andrew Kernerman

|                                                     |                              |       | Comple Number                | 7                   | 8                   | 9                   | 10           | 11                         |
|-----------------------------------------------------|------------------------------|-------|------------------------------|---------------------|---------------------|---------------------|--------------|----------------------------|
| MATRIX: WATER                                       |                              |       | Sample Number                |                     | o<br>BH2            |                     | DUP-1        |                            |
|                                                     |                              |       | Sample Name<br>Sample Matrix | BH1<br>Ground Water | BH2<br>Ground Water | BH3<br>Ground Water | Ground Water | Trip Blank<br>Ground Water |
| 1 = REG153 / GROUND WATER / FINE - TABLE 2 - All Ty | ypes of Property Uses - UNDE | FINED | Sample Date                  | 16/12/2022          | 16/12/2022          | 16/12/2022          | 16/12/2022   | 16/12/2022                 |
| Parameter                                           | Units                        | RL    | L1                           | Result              | Result              | Result              | Result       | Result                     |
| BTEX                                                |                              |       |                              |                     |                     |                     |              |                            |
| Benzene                                             | µg/L                         | 0.5   | 5                            | < 0.5               | < 0.5               | < 0.5               | < 0.5        | < 0.5                      |
| Ethylbenzene                                        | µg/L                         | 0.5   | 2.4                          | < 0.5               | < 0.5               | < 0.5               | < 0.5        | < 0.5                      |
| Toluene                                             | µg/L                         | 0.5   | 24                           | < 0.5               | < 0.5               | < 0.5               | < 0.5        | < 0.5                      |
| Xylene (total)                                      | µg/L                         | 0.5   | 300                          | < 0.5               | < 0.5               | < 0.5               | < 0.5        | < 0.5                      |
| m/p-xylene                                          | µg/L                         | 0.5   |                              | < 0.5               | < 0.5               | < 0.5               | < 0.5        | < 0.5                      |
| o-xylene                                            | µg/L                         | 0.5   |                              | < 0.5               | < 0.5               | < 0.5               | < 0.5        | < 0.5                      |
| Hydrides                                            |                              |       | I                            |                     |                     |                     |              |                            |
| Antimony                                            | µg/L                         | 0.9   | 6                            | < 0.9               | 1.4                 | < 0.9               | < 0.9        |                            |
| Arsenic                                             | µg/L                         | 0.2   | 25                           | 2.4                 | 3.5                 | 0.6                 | 2.3          |                            |
| Selenium                                            | µg/L                         | 0.04  | 10                           | 0.14                | 0.48                | < 0.04              | 0.12         |                            |
| Metals and Inorganics                               |                              |       | · · · · · ·                  |                     |                     |                     |              |                            |
| Barium                                              | µg/L                         | 0.08  | 1000                         | 216                 | 66.8                | 184                 | 213          |                            |
| Beryllium                                           | µg/L                         | 0.007 | 4                            | < 0.007             | < 0.007             | < 0.007             | < 0.007      |                            |
| Boron                                               | µg/L                         | 2     | 5000                         | 376                 | 325                 | 193                 | 419          |                            |
| Cadmium                                             | µg/L                         | 0.003 | 2.7                          | 0.004               | 0.006               | < 0.003             | 0.003        |                            |
| Chromium                                            | µg/L                         | 0.08  | 50                           | 0.11                | 0.16                | 0.16                | 0.12         |                            |
| Cobalt                                              | µg/L                         | 0.004 | 3.8                          | 0.098               | 0.152               | 0.069               | 0.064        |                            |
| Copper                                              | µg/L                         | 0.2   | 87                           | 6.9                 | 0.3                 | 3.6                 | 0.2          |                            |
| Lead                                                | µg/L                         | 0.09  | 10                           | 0.12                | < 0.09              | 0.57                | < 0.09       |                            |
| Molybdenum                                          | µg/L                         | 0.04  | 70                           | 3.07                | 13.7                | 0.93                | 3.76         |                            |
| Nickel                                              | µg/L                         | 0.1   | 100                          | 1.0                 | 0.7                 | 0.4                 | 0.3          |                            |



#### Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

| MATRIX: WATER                                          |                        |        | Sample Number | 7            | 8            | 9            | 10           | 11           |
|--------------------------------------------------------|------------------------|--------|---------------|--------------|--------------|--------------|--------------|--------------|
|                                                        |                        |        | Sample Name   | BH1          | BH2          | BH3          | DUP-1        | Trip Blank   |
| 1 = REG153 / GROUND WATER / FINE - TABLE 2 - All Types | of Property Uses - UND | EFINED | Sample Matrix | Ground Water |
|                                                        |                        |        | Sample Date   | 16/12/2022   | 16/12/2022   | 16/12/2022   | 16/12/2022   | 16/12/2022   |
| Parameter                                              | Units                  | RL     | L1            | Result       | Result       | Result       | Result       | Result       |
| Metals and Inorganics (continued)                      |                        |        |               |              |              |              |              |              |
| Silver                                                 | µg/L                   | 0.05   | 1.5           | < 0.05       | < 0.05       | < 0.05       | < 0.05       |              |
| Thallium                                               | µg/L                   | 0.005  | 2             | 0.005        | 0.015        | < 0.005      | < 0.005      |              |
| Uranium                                                | µg/L                   | 0.002  | 20            | 0.212        | 2.72         | 0.072        | 0.214        |              |
| Vanadium                                               | µg/L                   | 0.01   | 6.2           | 0.21         | 1.82         | 0.25         | 0.22         |              |
| Zinc                                                   | µg/L                   | 2      | 1100          | 4            | < 2          | 6            | < 2          |              |
| Na                                                     |                        |        | 1             |              |              |              |              |              |
| Sodium                                                 | μg/L                   | 10     | 490000        | 76600        | 90100        | 29900        | 74700        |              |
| Other (ORP)                                            |                        |        |               |              |              |              |              |              |
|                                                        |                        | 0.01   | 4             | 10.01        | 10.01        | 10.01        | - 0.01       |              |
| Mercury (total)                                        | µg/L                   | 0.01   | 1             | < 0.01       | < 0.01       | < 0.01       | < 0.01       |              |
| pH                                                     | No unit                | 0.05   |               | 8.06         | 8.26         | 8.34         | 8.03         |              |
| Chloride                                               | µg/L                   | 1000   | 790000        | 70000        | 53000        | 32000        | 70000        |              |
| Chromium VI                                            | μg/L                   | 0.2    | 25            | < 0.2        | < 0.2        | < 0.2        | < 0.2        |              |
| Cyanide (free)                                         | µg/L                   | 2      | 66            | < 2          | < 2          | < 2          | < 2          |              |



#### Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

|                                                           |                       |        |              | _      | _            | _            |              |              |
|-----------------------------------------------------------|-----------------------|--------|--------------|--------|--------------|--------------|--------------|--------------|
| IATRIX: WATER                                             |                       |        | Sample Numbe |        | 8            | 9            | 10           | 11           |
|                                                           |                       |        | Sample Name  |        | BH2          | BH3          | DUP-1        | Trip Blank   |
| I = REG153 / GROUND WATER / FINE - TABLE 2 - All Types of | f Property Uses - UND | EFINED | Sample Matri |        | Ground Water | Ground Water | Ground Water | Ground Water |
|                                                           |                       |        | Sample Date  |        | 16/12/2022   | 16/12/2022   | 16/12/2022   | 16/12/2022   |
| Parameter                                                 | Units                 | RL     | L1           | Result | Result       | Result       | Result       | Result       |
| AHs                                                       |                       |        | 1            |        |              |              |              |              |
| Acenaphthene                                              | µg/L                  | 0.1    | 4.1          | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Acenaphthylene                                            | µg/L                  | 0.1    | 1            | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Anthracene                                                | µg/L                  | 0.1    | 2.4          | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Benzo(a)anthracene                                        | µg/L                  | 0.1    | 1            | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Benzo(a)pyrene                                            | µg/L                  | 0.01   | 0.01         | < 0.01 | < 0.01       | < 0.01       | < 0.01       |              |
| Benzo(b+j)fluoranthene                                    | µg/L                  | 0.1    | 0.1          | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Benzo(ghi)perylene                                        | µg/L                  | 0.2    | 0.2          | < 0.2  | < 0.2        | < 0.2        | < 0.2        |              |
| Benzo(k)fluoranthene                                      | µg/L                  | 0.1    | 0.1          | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Chrysene                                                  | µg/L                  | 0.1    | 0.1          | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Dibenzo(a,h)anthracene                                    | µg/L                  | 0.1    | 0.2          | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Fluoranthene                                              | µg/L                  | 0.1    | 0.41         | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Fluorene                                                  | µg/L                  | 0.1    | 120          | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Indeno(1,2,3-cd)pyrene                                    | µg/L                  | 0.2    | 0.2          | < 0.2  | < 0.2        | < 0.2        | < 0.2        |              |
| 1-Methylnaphthalene                                       | µg/L                  | 0.5    |              | < 0.5  | < 0.5        | < 0.5        | < 0.5        |              |
| 2-Methylnaphthalene                                       | µg/L                  | 0.5    |              | < 0.5  | < 0.5        | < 0.5        | < 0.5        |              |
| Methylnaphthalene, 2-(1-)                                 | µg/L                  | 0.5    | 3.2          | < 0.5  | < 0.5        | < 0.5        | < 0.5        |              |
| Naphthalene                                               | µg/L                  | 0.5    | 11           | < 0.5  | < 0.5        | < 0.5        | < 0.5        |              |
| Phenanthrene                                              | µg/L                  | 0.1    | 1            | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |
| Pyrene                                                    | µg/L                  | 0.1    | 4.1          | < 0.1  | < 0.1        | < 0.1        | < 0.1        |              |



#### Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

| MATRIX: WATER                                             |                        |        |     | Sample Number | 7            | 8            | 9            | 10           | 11           |
|-----------------------------------------------------------|------------------------|--------|-----|---------------|--------------|--------------|--------------|--------------|--------------|
|                                                           |                        |        |     | Sample Name   | BH1          | BH2          | BH3          | DUP-1        | Trip Blank   |
| L1 = REG153 / GROUND WATER / FINE - TABLE 2 - All Types o | of Property Uses - UND | EFINED |     | Sample Matrix | Ground Water |
|                                                           |                        |        |     | Sample Date   | 16/12/2022   | 16/12/2022   | 16/12/2022   | 16/12/2022   | 16/12/2022   |
| Parameter                                                 | Units                  | RL     | L1  |               | Result       | Result       | Result       | Result       | Result       |
| PHCs                                                      |                        |        |     |               |              |              |              |              |              |
| F1 (C6-C10)                                               | µg/L                   | 25     | 750 |               | < 25         | < 25         | < 25         | < 25         |              |
| F1-BTEX (C6-C10)                                          | µg/L                   | 25     |     |               | < 25         | < 25         | < 25         | < 25         |              |
| F2 (C10-C16)                                              | µg/L                   | 100    | 150 |               | < 100        | < 100        | < 100        | < 100        |              |
| F3 (C16-C34)                                              | µg/L                   | 200    | 500 |               | < 200        | < 200        | < 200        | < 200        |              |
| F4 (C34-C50)                                              | µg/L                   | 200    | 500 |               | < 200        | < 200        | < 200        | < 200        |              |
| Chromatogram returned to baseline at nC50                 | Yes / No               | no     |     |               | YES          | YES          | YES          | YES          |              |
| SVOC Surrogates                                           |                        |        |     |               |              |              |              |              |              |
| Surr 2-Methylnaphthalene-D10                              | Surr Rec %             | no     |     |               | NV           | NV           | 91           | 89           |              |
| Surr Fluoranthene-D10                                     | Surr Rec %             | no     |     |               | NV           | NV           | 99           | 101          |              |
| Surr 2-Fluorobiphenyl                                     | Surr Rec %             | no     |     |               | NV           | NV           | 84           | 82           |              |
| Surr 4-Terphenyl-d14                                      | Surr Rec %             | no     |     |               | NV           | NV           | 103          | 110          |              |
| THMs (VOC)                                                |                        |        |     |               |              |              |              |              |              |
| Bromodichloromethane                                      | µg/L                   | 0.5    | 16  |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Bromoform                                                 | µg/L                   | 0.5    | 25  |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Dibromochloromethane                                      | µg/L                   | 0.5    | 25  |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |



#### Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

|                                                         |                       |        | O                            | 7                          | 0                          | 0                          | 10                         |                            |
|---------------------------------------------------------|-----------------------|--------|------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| MATRIX: WATER                                           |                       |        | Sample Number                | 7                          | 8                          | 9                          | 10                         | 11                         |
|                                                         |                       |        | Sample Name                  | BH1                        | BH2                        | BH3                        | DUP-1                      | Trip Blank                 |
| = REG153 / GROUND WATER / FINE - TABLE 2 - All Types of | f Property Uses - UND | EFINED | Sample Matrix<br>Sample Date | Ground Water<br>16/12/2022 |
| Parameter                                               | Units                 | RL     | L1                           | Result                     | Result                     | Result                     | Result                     | Result                     |
| OC Surrogates                                           | Onits                 |        |                              | Result                     | Rosuit                     | Rosuit                     | Result                     | Result                     |
| Surr 1,2-Dichloroethane-d4                              | Surr Rec %            | no     |                              | 101                        | 103                        | 102                        | 102                        | 102                        |
| Surr 2-Bromo-1-Chloropropane                            | Surr Rec %            | no     |                              | 83                         | 86                         | 86                         | 87                         | 85                         |
| Surr 4-Bromofluorobenzene                               | Surr Rec %            | no     |                              | 90                         | 92                         | 91                         | 89                         | 90                         |
| OCs                                                     |                       |        | I                            |                            |                            |                            |                            |                            |
| Acetone                                                 | µg/L                  | 30     | 2700                         | < 30                       | < 30                       | < 30                       | < 30                       | < 30                       |
| Bromomethane                                            | µg/L                  | 0.5    | 0.89                         | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| Carbon tetrachloride                                    | µg/L                  | 0.2    | 5                            | < 0.2                      | < 0.2                      | < 0.2                      | < 0.2                      | < 0.2                      |
| Chlorobenzene                                           | µg/L                  | 0.5    | 30                           | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| Chloroform                                              | µg/L                  | 0.5    | 22                           | < 0.5                      | 2.0                        | < 0.5                      | < 0.5                      | < 0.5                      |
| 1,2-Dichlorobenzene                                     | µg/L                  | 0.5    | 3                            | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| 1,3-Dichlorobenzene                                     | µg/L                  | 0.5    | 59                           | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| 1,4-Dichlorobenzene                                     | µg/L                  | 0.5    | 1                            | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| Dichlorodifluoromethane                                 | µg/L                  | 2.0    | 590                          | < 2                        | < 2                        | < 2                        | < 2                        | < 2                        |
| 1,1-Dichloroethane                                      | µg/L                  | 0.5    | 5                            | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| 1,2-Dichloroethane                                      | µg/L                  | 0.5    | 5                            | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| 1,1-Dichloroethylene                                    | µg/L                  | 0.5    | 14                           | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| trans-1,2-Dichloroethene                                | µg/L                  | 0.5    | 17                           | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| cis-1,2-Dichloroethene                                  | µg/L                  | 0.5    | 17                           | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| 1,2-Dichloropropane                                     | µg/L                  | 0.5    | 5                            | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| cis-1,3-Dichloropropene                                 | µg/L                  | 0.5    |                              | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| trans-1,3-Dichloropropene                               | μg/L                  | 0.5    |                              | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |
| 1,3-dichloropropene (total)                             | µg/L                  | 0.5    | 0.5                          | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      | < 0.5                      |



#### Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd, Pickering

Project Manager: Vivi Tran

|                                                             |                      |       |      | Sample Number | 7            | 8            | 9            | 10           | 11           |
|-------------------------------------------------------------|----------------------|-------|------|---------------|--------------|--------------|--------------|--------------|--------------|
| MATRIX: WATER                                               |                      |       |      | Sample Name   | ,<br>BH1     | BH2          | BH3          | DUP-1        | Trip Blank   |
|                                                             |                      |       |      | Sample Name   | Ground Water |
| 1 = REG153 / GROUND WATER / FINE - TABLE 2 - All Types of F | Property Uses - UNDE | FINED |      | Sample Date   | 16/12/2022   | 16/12/2022   | 16/12/2022   | 16/12/2022   | 16/12/2022   |
| Parameter                                                   | Units                | RL    | L1   |               | Result       | Result       | Result       | Result       | Result       |
| /OCs (continued)                                            |                      |       |      |               |              |              |              |              |              |
| Ethylenedibromide                                           | µg/L                 | 0.2   | 0.2  |               | < 0.2        | < 0.2        | < 0.2        | < 0.2        | < 0.2        |
| n-Hexane                                                    | µg/L                 | 1.0   | 520  |               | < 1          | < 1          | < 1          | < 1          | < 1          |
| Methyl ethyl ketone                                         | μg/L                 | 20    | 1800 |               | < 20         | < 20         | < 20         | < 20         | < 20         |
| Methyl Isobutyl Ketone                                      | μg/L                 | 20    | 640  |               | < 20         | < 20         | < 20         | < 20         | < 20         |
| Methyl-t-butyl Ether                                        | μg/L                 | 2.0   | 15   |               | < 2          | < 2          | < 2          | < 2          | < 2          |
| Methylene Chloride                                          | μg/L                 | 0.5   | 50   |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Styrene                                                     | μg/L                 | 0.5   | 5.4  |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Tetrachloroethylene (perchloroethylene)                     | μg/L                 | 0.5   | 17   |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| 1,1,1,2-Tetrachloroethane                                   | μg/L                 | 0.5   | 1.1  |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| 1,1,2,2-Tetrachloroethane                                   | μg/L                 | 0.5   | 1    |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| 1,1,1-Trichloroethane                                       | μg/L                 | 0.5   | 200  |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| 1,1,2-Trichloroethane                                       | μg/L                 | 0.5   | 5    |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Trichloroethylene                                           | μg/L                 | 0.5   | 5    |               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Trichlorofluoromethane                                      | μg/L                 | 5.0   | 150  |               | < 5          | < 5          | < 5          | < 5          | < 5          |
| Vinyl Chloride                                              | μg/L                 | 0.2   | 1.7  |               | < 0.2        | < 0.2        | < 0.2        | < 0.2        | < 0.2        |



EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated



#### HOLDING TIME SUMMARY

| Sample Name                             | QC Batch<br>Reference | Sample<br>Number | Sampled    | Received   | Extracted/<br>Prepared | Analysed   | Holding<br>Time | Approved   |
|-----------------------------------------|-----------------------|------------------|------------|------------|------------------------|------------|-----------------|------------|
| Anions by discrete analyzer             |                       |                  |            |            |                        |            |                 |            |
| Method: US EPA 325.2   Internal ref.: I | ME-CA-[ENV]EVVL-      | LAK-AN-U         | 20         |            |                        |            |                 |            |
| BH1                                     | DIO5087-DEC22         | 7                | 12/16/2022 | 12/16/2022 | 12/21/2022             | 12/21/2022 | 01/13/2023      | 12/22/2022 |
| BH2                                     | DIO5087-DEC22         | 8                | 12/16/2022 | 12/16/2022 | 12/21/2022             | 12/21/2022 | 01/13/2023      | 12/22/2022 |
| внз                                     | DIO5087-DEC22         | 9                | 12/16/2022 | 12/16/2022 | 12/21/2022             | 12/21/2022 | 01/13/2023      | 12/22/2022 |
| DUP-1                                   | DIO5087-DEC22         | 10               | 12/16/2022 | 12/16/2022 | 12/21/2022             | 12/21/2022 | 01/13/2023      | 12/22/2022 |
| Trip Blank                              |                       | 11               | 12/16/2022 | 12/16/2022 | 12/21/2022             | 12/21/2022 | 01/13/2023      | 12/22/2022 |

### Cyanide by SFA

### Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

| ВН1        | SKA0174-DEC22 | 7  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |
|------------|---------------|----|------------|------------|------------|------------|------------|------------|
| BH2        | SKA0174-DEC22 | 8  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |
| внз        | SKA0174-DEC22 | 9  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |
| DUP-1      | SKA0174-DEC22 | 10 | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |
| Trip Blank |               | 11 | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |

#### Hexavalent Chromium by SFA

### Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

| BH1        | SKA0179-DEC22 | 7  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |
|------------|---------------|----|------------|------------|------------|------------|------------|------------|
| BH2        | SKA0179-DEC22 | 8  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |
| ВНЗ        | SKA0179-DEC22 | 9  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |
| DUP-1      | SKA0179-DEC22 | 10 | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |
| Trip Blank |               | 11 | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/30/2022 | 12/20/2022 |

#### Mercury by CVAAS

### Method: SM 3112/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

| BH1        | EHG0039-DEC22 | 7  | 12/16/2022 | 12/16/2022 | 12/21/2022 | 12/21/2022 | 01/13/2023 | 12/21/2022 |
|------------|---------------|----|------------|------------|------------|------------|------------|------------|
| BH2        | EHG0039-DEC22 | 8  | 12/16/2022 | 12/16/2022 | 12/21/2022 | 12/21/2022 | 01/13/2023 | 12/21/2022 |
| внз        | EHG0039-DEC22 | 9  | 12/16/2022 | 12/16/2022 | 12/21/2022 | 12/21/2022 | 01/13/2023 | 12/21/2022 |
| DUP-1      | EHG0039-DEC22 | 10 | 12/16/2022 | 12/16/2022 | 12/21/2022 | 12/21/2022 | 01/13/2023 | 12/21/2022 |
| Trip Blank |               | 11 | 12/16/2022 | 12/16/2022 | 12/21/2022 | 12/21/2022 | 01/13/2023 | 12/21/2022 |

#### Metals in aqueous samples - ICP-MS

### Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

| BH1        | EMS0152-DEC22 | 7  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/22/2022 | 02/14/2023 | 12/22/2022 |
|------------|---------------|----|------------|------------|------------|------------|------------|------------|
| BH2        | EMS0152-DEC22 | 8  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/22/2022 | 02/14/2023 | 12/22/2022 |
| внз        | EMS0152-DEC22 | 9  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/22/2022 | 02/14/2023 | 12/22/2022 |
| DUP-1      | EMS0152-DEC22 | 10 | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/22/2022 | 02/14/2023 | 12/22/2022 |
| Trip Blank |               | 11 | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/22/2022 | 02/14/2023 | 12/22/2022 |

### Petroleum Hydrocarbons (F1)

### Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

7

GCM0289-DEC22



#### HOLDING TIME SUMMARY

| Sample Name                   | QC Batch<br>Reference     | Sample<br>Number | Sampled    | Received   | Extracted/<br>Prepared | Analysed | Holding<br>Time | Approved   |
|-------------------------------|---------------------------|------------------|------------|------------|------------------------|----------|-----------------|------------|
| Petroleum Hydrocarbons (F1)   | · · · · · ·               |                  |            |            |                        |          |                 |            |
| Method: CCME Tier 1   Interna | al ref.: ME-CA-[ENV]GC-LA | K-AN-010         |            |            |                        |          |                 |            |
| BH2                           | GCM0289-DEC22             | 8                | 12/16/2022 | 12/16/2022 |                        |          | 12/30/2022      | 12/22/2022 |
| BH3                           | GCM0289-DEC22             | 9                | 12/16/2022 | 12/16/2022 |                        |          | 12/30/2022      | 12/22/2022 |
| DUP-1                         | GCM0289-DEC22             | 10               | 12/16/2022 | 12/16/2022 |                        |          | 12/30/2022      | 12/22/2022 |
| Trip Blank                    |                           | 11               | 12/16/2022 | 12/16/2022 |                        |          | 12/30/2022      | 12/22/2022 |

### Petroleum Hydrocarbons (F2-F4)

### Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

| BH1        | GCM0294-DEC22 | 7  | 12/16/2022 | 12/16/2022 | 12/30/2022 | 12/23/2022 |
|------------|---------------|----|------------|------------|------------|------------|
| BH2        | GCM0294-DEC22 | 8  | 12/16/2022 | 12/16/2022 | 12/30/2022 | 12/23/2022 |
| внз        | GCM0294-DEC22 | 9  | 12/16/2022 | 12/16/2022 | 12/30/2022 | 12/23/2022 |
| DUP-1      | GCM0294-DEC22 | 10 | 12/16/2022 | 12/16/2022 | 12/30/2022 | 12/23/2022 |
| Trip Blank |               | 11 | 12/16/2022 | 12/16/2022 | 12/30/2022 | 12/23/2022 |

#### pН

### Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

| ВН1        | EWL0330-DEC22 | 7  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/23/2022 | 12/20/2022 |
|------------|---------------|----|------------|------------|------------|------------|------------|------------|
| BH2        | EWL0330-DEC22 | 8  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/23/2022 | 12/20/2022 |
| внз        | EWL0330-DEC22 | 9  | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/23/2022 | 12/20/2022 |
| DUP-1      | EWL0330-DEC22 | 10 | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/23/2022 | 12/20/2022 |
| Trip Blank |               | 11 | 12/16/2022 | 12/16/2022 | 12/19/2022 | 12/19/2022 | 12/23/2022 | 12/20/2022 |

#### **Semi-Volatile Organics**

### Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

| BH1        | GCM0308-DEC22 | 7  | 12/16/2022 | 12/16/2022 | 12/30/2022 | 12/22/2022 |
|------------|---------------|----|------------|------------|------------|------------|
| BH2        | GCM0308-DEC22 | 8  | 12/16/2022 | 12/16/2022 | 01/05/2023 | 12/22/2022 |
| внз        | GCM0308-DEC22 | 9  | 12/16/2022 | 12/16/2022 | 01/05/2023 | 12/22/2022 |
| DUP-1      | GCM0308-DEC22 | 10 | 12/16/2022 | 12/16/2022 | 12/30/2022 | 12/22/2022 |
| Trip Blank |               | 11 | 12/16/2022 | 12/16/2022 | 12/30/2022 | 12/22/2022 |

#### **Volatile Organics**

### Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

| BH1        | GCM0283-DEC22 | 7  | 12/16/2022 | 12/16/2022 | 12/20/2022 | 12/20/2022 | 12/30/2022 | 12/22/2022 |
|------------|---------------|----|------------|------------|------------|------------|------------|------------|
| BH2        | GCM0283-DEC22 | 8  | 12/16/2022 | 12/16/2022 | 12/20/2022 | 12/20/2022 | 12/30/2022 | 12/22/2022 |
| внз        | GCM0283-DEC22 | 9  | 12/16/2022 | 12/16/2022 | 12/20/2022 | 12/20/2022 | 12/30/2022 | 12/22/2022 |
| DUP-1      | GCM0283-DEC22 | 10 | 12/16/2022 | 12/16/2022 | 12/20/2022 | 12/20/2022 | 12/30/2022 | 12/22/2022 |
| Trip Blank | GCM0283-DEC22 | 11 | 12/16/2022 | 12/16/2022 | 12/20/2022 | 12/20/2022 | 12/30/2022 | 12/22/2022 |



#### Anions by discrete analyzer

### Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

| Parameter | QC batch      | Units     | RL    | Method | Dup       | Duplicate         |                     | S/Spike Blank |                   | M      | latrix Spike / Ret | :    |
|-----------|---------------|-----------|-------|--------|-----------|-------------------|---------------------|---------------|-------------------|--------|--------------------|------|
|           | Reference     | Reference | Blank | RPD    | AC<br>(%) | Spike<br>Recovery | Recovery Limits (%) |               | Spike<br>Recovery | Recove | ry Limits<br>6)    |      |
|           |               |           |       |        |           | (%)               | (%)                 | Low           | High              | (%)    | Low                | High |
| Chloride  | DIO5087-DEC22 | ug/L      | 1000  | <1000  | ND        | 20                | 108                 | 80            | 120               | 118    | 75                 | 125  |

### Cyanide by SFA

#### Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

| Parameter      | QC batch      | Units | RL | Method | Duj | olicate   | LC              | S/Spike Blank |                 | м                 | latrix Spike / Ref. |      |
|----------------|---------------|-------|----|--------|-----|-----------|-----------------|---------------|-----------------|-------------------|---------------------|------|
|                | Reference     |       |    | Blank  | RPD | AC<br>(%) | Spike           |               | ry Limits<br>%) | Spike<br>Recovery | Recover             | -    |
|                |               |       |    |        |     | (%)       | Recovery<br>(%) | Low           | High            | (%)               | Low                 | High |
| Cyanide (free) | SKA0174-DEC22 | µg/L  | 2  | <2     | ND  | 10        | 98              | 80            | 120             | NV                | 75                  | 125  |

### Hexavalent Chromium by SFA

#### Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVISKA-LAK-AN-012

| Parameter   | QC batch      | Units | RL  | Method | Dup | olicate | LC              | S/Spike Blank |                 | м                 | Matrix Spike / Ref. |                 |
|-------------|---------------|-------|-----|--------|-----|---------|-----------------|---------------|-----------------|-------------------|---------------------|-----------------|
|             | Reference     |       |     | Blank  | RPD | AC      | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                     | ry Limits<br>%) |
|             |               |       |     |        |     | (%)     | Recovery<br>(%) | Low           | High            | (%)               | Low                 | High            |
| Chromium VI | SKA0179-DEC22 | ug/L  | 0.2 | <0.2   | 2   | 20      | 98              | 80            | 120             | NV                | 75                  | 125             |



### Mercury by CVAAS

### Method: SM 3112/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

| Parameter       | QC batch      | Units    | RL   | Method | Dup | Duplicate |                   | S/Spike Blank |                 | м                 | atrix Spike / Ref |                |
|-----------------|---------------|----------|------|--------|-----|-----------|-------------------|---------------|-----------------|-------------------|-------------------|----------------|
|                 | Reference     | eference |      | Blank  | RPD | AC<br>(%) | Spike<br>Recovery |               | ry Limits<br>%) | Spike<br>Recovery | Recover<br>(9     | y Limits<br>6) |
|                 |               |          |      |        |     | (%)       | (%)               | Low           | High            | (%)               | Low               | High           |
| Mercury (total) | EHG0039-DEC22 | ug/L     | 0.01 | < 0.01 | 0   | 20        | 90                | 80            | 120             | 123               | 70                | 130            |



### Metals in aqueous samples - ICP-MS

### Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

| Parameter  | QC batch      | Units | RL    | Method | Dup | licate    | LC                | S/Spike Blank |      | Ma                | atrix Spike / Ref |                 |
|------------|---------------|-------|-------|--------|-----|-----------|-------------------|---------------|------|-------------------|-------------------|-----------------|
|            | Reference     |       |       | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recover<br>(% | -    | Spike<br>Recovery | Recove            | ry Limits<br>%) |
|            |               |       |       |        |     | (70)      | (%)               | Low           | High | (%)               | Low               | High            |
| Silver     | EMS0152-DEC22 | ug/L  | 0.05  | <0.05  | ND  | 20        | 99                | 90            | 110  | 91                | 70                | 130             |
| Arsenic    | EMS0152-DEC22 | µg/L  | 0.2   | <0.2   | 7   | 20        | 102               | 90            | 110  | 111               | 70                | 130             |
| Barium     | EMS0152-DEC22 | ug/L  | 0.08  | <0.02  | 15  | 20        | 99                | 90            | 110  | 93                | 70                | 130             |
| Beryllium  | EMS0152-DEC22 | µg/L  | 0.007 | <0.007 | ND  | 20        | 100               | 90            | 110  | 93                | 70                | 130             |
| Boron      | EMS0152-DEC22 | µg/L  | 2     | <2     | 2   | 20        | 100               | 90            | 110  | 94                | 70                | 130             |
| Cadmium    | EMS0152-DEC22 | µg/L  | 0.003 | <0.003 | 11  | 20        | 98                | 90            | 110  | 102               | 70                | 130             |
| Cobalt     | EMS0152-DEC22 | µg/L  | 0.004 | <0.004 | 14  | 20        | 96                | 90            | 110  | 95                | 70                | 130             |
| Chromium   | EMS0152-DEC22 | ug/L  | 0.08  | <0.08  | 10  | 20        | 99                | 90            | 110  | 100               | 70                | 130             |
| Copper     | EMS0152-DEC22 | ug/L  | 0.2   | <0.2   | 3   | 20        | 95                | 90            | 110  | 105               | 70                | 130             |
| Molybdenum | EMS0152-DEC22 | ug/L  | 0.04  | <0.04  | 0   | 20        | 98                | 90            | 110  | 106               | 70                | 130             |
| Sodium     | EMS0152-DEC22 | ug/L  | 10    | 2      | 4   | 20        | 97                | 90            | 110  | 97                | 70                | 130             |
| Nickel     | EMS0152-DEC22 | µg/L  | 0.1   | <0.1   | 5   | 20        | 97                | 90            | 110  | 97                | 70                | 130             |
| Lead       | EMS0152-DEC22 | ug/L  | 0.09  | <0.01  | ND  | 20        | 100               | 90            | 110  | 97                | 70                | 130             |
| Antimony   | EMS0152-DEC22 | ug/L  | 0.9   | <0.9   | 1   | 20        | 97                | 90            | 110  | 80                | 70                | 130             |
| Selenium   | EMS0152-DEC22 | µg/L  | 0.04  | <0.04  | 2   | 20        | 100               | 90            | 110  | 101               | 70                | 130             |
| Thallium   | EMS0152-DEC22 | µg/L  | 0.005 | <0.005 | ND  | 20        | 97                | 90            | 110  | 96                | 70                | 130             |
| Uranium    | EMS0152-DEC22 | µg/L  | 0.002 | <0.002 | 1   | 20        | 91                | 90            | 110  | 84                | 70                | 130             |
| Vanadium   | EMS0152-DEC22 | µg/L  | 0.01  | -0.005 | 10  | 20        | 97                | 90            | 110  | 97                | 70                | 130             |
| Zinc       | EMS0152-DEC22 | µg/L  | 2     | 0.007  | ND  | 20        | 95                | 90            | 110  | 111               | 70                | 130             |



#### Petroleum Hydrocarbons (F1)

### Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

| Parameter   | QC batch      | Units | RL | Method | Duplicate |           | LC              | S/Spike Blank |                  | М                 | Matrix Spike / Ref. |                 |
|-------------|---------------|-------|----|--------|-----------|-----------|-----------------|---------------|------------------|-------------------|---------------------|-----------------|
|             | Reference     |       |    | Blank  | RPD       | AC<br>(%) | Spike           |               | ery Limits<br>%) | Spike<br>Recovery | Recove              | ry Limits<br>6) |
|             |               |       |    |        |           | (%)       | Recovery<br>(%) | Low           | High             | (%)               | Low                 | High            |
| F1 (C6-C10) | GCM0289-DEC22 | μg/L  | 25 | <25    | ND        | 30        | 89              | 60            | 140              | 74                | 60                  | 140             |

### Petroleum Hydrocarbons (F2-F4)

### Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

| Parameter    | QC batch      | Units | RL  | Method | Duj | olicate | LCS/Spike Blank |        |      | Matrix Spike / Ref. |     |                  |
|--------------|---------------|-------|-----|--------|-----|---------|-----------------|--------|------|---------------------|-----|------------------|
|              | Reference     |       |     | Blank  | RPD | AC      | Spike           | Recove | •    | Spike<br>Recovery   |     | ery Limits<br>%) |
|              |               |       |     |        |     | (%)     | Recovery<br>(%) | Low    | High | (%)                 | Low | High             |
| F2 (C10-C16) | GCM0294-DEC22 | µg/L  | 100 | <100   | ND  | 30      | 84              | 60     | 140  | 91                  | 60  | 140              |
| F3 (C16-C34) | GCM0294-DEC22 | μg/L  | 200 | <200   | ND  | 30      | 84              | 60     | 140  | 91                  | 60  | 140              |
| F4 (C34-C50) | GCM0294-DEC22 | μg/L  | 200 | <200   | ND  | 30      | 84              | 60     | 140  | 91                  | 60  | 140              |



#### pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

| Parameter | QC batch      | Units   | RL   | Method | •   |     | LC              | LCS/Spike Blank |                 |                   | Matrix Spike / Ref. |                 |  |
|-----------|---------------|---------|------|--------|-----|-----|-----------------|-----------------|-----------------|-------------------|---------------------|-----------------|--|
|           | Reference     |         |      | Blank  | RPD |     | Spike           |                 | ry Limits<br>%) | Spike<br>Recovery | Recove              | ry Limits<br>6) |  |
|           |               |         |      |        |     | (%) | Recovery<br>(%) | Low             | High            | (%)               | Low                 | High            |  |
| рН        | EWL0330-DEC22 | No unit | 0.05 | NA     | 2   |     | 102             |                 |                 | NA                |                     |                 |  |



### **Semi-Volatile Organics**

### Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

| Parameter              | QC batch      | Units | RL   | Method | Dup | licate    | LC                | S/Spike Blank |      | Ma                | atrix Spike / Re | ł.               |
|------------------------|---------------|-------|------|--------|-----|-----------|-------------------|---------------|------|-------------------|------------------|------------------|
|                        | Reference     |       |      | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recover       | -    | Spike<br>Recovery |                  | ery Limits<br>%) |
|                        |               |       |      |        |     | (70)      | (%)               | Low           | High | (%)               | Low              | High             |
| 1-Methylnaphthalene    | GCM0308-DEC22 | µg/L  | 0.5  | < 0.5  | NSS | 30        | 107               | 50            | 140  | NSS               | 50               | 140              |
| 2-Methylnaphthalene    | GCM0308-DEC22 | µg/L  | 0.5  | < 0.5  | NSS | 30        | 103               | 50            | 140  | NSS               | 50               | 140              |
| Acenaphthene           | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 101               | 50            | 140  | NSS               | 50               | 140              |
| Acenaphthylene         | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 99                | 50            | 140  | NSS               | 50               | 140              |
| Anthracene             | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 89                | 50            | 140  | NSS               | 50               | 140              |
| Benzo(a)anthracene     | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 95                | 50            | 140  | NSS               | 50               | 140              |
| Benzo(a)pyrene         | GCM0308-DEC22 | ug/L  | 0.01 | < 0.01 | NSS | 30        | 92                | 50            | 140  | NSS               | 50               | 140              |
| Benzo(b+j)fluoranthene | GCM0308-DEC22 | ug/L  | 0.1  | < 0.1  | NSS | 30        | 92                | 50            | 140  | NSS               | 50               | 140              |
| Benzo(ghi)perylene     | GCM0308-DEC22 | µg/L  | 0.2  | < 0.2  | NSS | 30        | 94                | 50            | 140  | NSS               | 50               | 140              |
| Benzo(k)fluoranthene   | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 96                | 50            | 140  | NSS               | 50               | 140              |
| Chrysene               | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 94                | 50            | 140  | NSS               | 50               | 140              |
| Dibenzo(a,h)anthracene | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 88                | 50            | 140  | NSS               | 50               | 140              |
| Fluoranthene           | GCM0308-DEC22 | ug/L  | 0.1  | < 0.1  | NSS | 30        | 100               | 50            | 140  | NSS               | 50               | 140              |
| Fluorene               | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 94                | 50            | 140  | NSS               | 50               | 140              |
| Indeno(1,2,3-cd)pyrene | GCM0308-DEC22 | µg/L  | 0.2  | < 0.2  | NSS | 30        | 87                | 50            | 140  | NSS               | 50               | 140              |
| Naphthalene            | GCM0308-DEC22 | µg/L  | 0.5  | < 0.5  | NSS | 30        | 96                | 50            | 140  | NSS               | 50               | 140              |
| Phenanthrene           | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 91                | 50            | 140  | NSS               | 50               | 140              |
| Pyrene                 | GCM0308-DEC22 | µg/L  | 0.1  | < 0.1  | NSS | 30        | 100               | 50            | 140  | NSS               | 50               | 140              |



### Volatile Organics

### Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

| Parameter                 | QC batch      | Units | RL  | RL Method Duplicate LCS/Spike Blank |     |           | Matrix Spike / Ref. |               |      |                   |              |                 |
|---------------------------|---------------|-------|-----|-------------------------------------|-----|-----------|---------------------|---------------|------|-------------------|--------------|-----------------|
|                           | Reference     |       |     | Blank                               | RPD | AC<br>(%) | Spike<br>Recovery   | Recover<br>(% |      | Spike<br>Recovery | Recove<br>(? | ry Limits<br>%) |
|                           |               |       |     |                                     |     |           | (%)                 | Low           | High | (%)               | Low          | High            |
| 1,1,1,2-Tetrachloroethane | GCM0283-DEC22 | μg/L  | 0.5 | <0.5                                | ND  | 30        | 101                 | 60            | 130  | 99                | 50           | 140             |
| 1,1,1-Trichloroethane     | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 100                 | 60            | 130  | 103               | 50           | 140             |
| 1,1,2,2-Tetrachloroethane | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 101                 | 60            | 130  | 97                | 50           | 140             |
| 1,1,2-Trichloroethane     | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 100                 | 60            | 130  | 98                | 50           | 140             |
| 1,1-Dichloroethane        | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 100                 | 60            | 130  | 103               | 50           | 140             |
| 1,1-Dichloroethylene      | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 107                 | 60            | 130  | 108               | 50           | 140             |
| 1,2-Dichlorobenzene       | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 101                 | 60            | 130  | 102               | 50           | 140             |
| 1,2-Dichloroethane        | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 100                 | 60            | 130  | 98                | 50           | 140             |
| 1,2-Dichloropropane       | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 98                  | 60            | 130  | 100               | 50           | 140             |
| 1,3-Dichlorobenzene       | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 103                 | 60            | 130  | 103               | 50           | 140             |
| 1,4-Dichlorobenzene       | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 102                 | 60            | 130  | 101               | 50           | 140             |
| Acetone                   | GCM0283-DEC22 | ug/L  | 30  | <30                                 | ND  | 30        | 97                  | 50            | 140  | 90                | 50           | 140             |
| Benzene                   | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 102                 | 60            | 130  | 104               | 50           | 140             |
| Bromodichloromethane      | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 101                 | 60            | 130  | 100               | 50           | 140             |
| Bromoform                 | GCM0283-DEC22 | μg/L  | 0.5 | <0.5                                | ND  | 30        | 97                  | 60            | 130  | 94                | 50           | 140             |
| Bromomethane              | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 113                 | 50            | 140  | 120               | 50           | 140             |
| Carbon tetrachloride      | GCM0283-DEC22 | µg/L  | 0.2 | <0.2                                | ND  | 30        | 100                 | 60            | 130  | 102               | 50           | 140             |
| Chlorobenzene             | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 100                 | 60            | 130  | 101               | 50           | 140             |
| Chloroform                | GCM0283-DEC22 | µg/L  | 0.5 | <0.5                                | ND  | 30        | 99                  | 60            | 130  | 101               | 50           | 140             |
| cis-1,2-Dichloroethene    | GCM0283-DEC22 | μg/L  | 0.5 | <0.5                                | ND  | 30        | 100                 | 60            | 130  | 101               | 50           | 140             |



#### Volatile Organics (continued)

### Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

| Parameter                 | QC batch      | Units | RL  | Method | Dup | licate    | LC                | LCS/Spike Blank |      | Matrix Spike / Ref. |        |                 |  |
|---------------------------|---------------|-------|-----|--------|-----|-----------|-------------------|-----------------|------|---------------------|--------|-----------------|--|
|                           | Reference     |       |     | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recoven<br>(%   |      | Spike<br>Recovery   | Recove | ry Limits<br>%) |  |
|                           |               |       |     |        |     | (70)      | (%)               | Low             | High | (%)                 | Low    | High            |  |
| cis-1,3-Dichloropropene   | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 100               | 60              | 130  | 100                 | 50     | 140             |  |
| Dibromochloromethane      | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 99                | 60              | 130  | 98                  | 50     | 140             |  |
| Dichlorodifluoromethane   | GCM0283-DEC22 | µg/L  | 2.0 | <2     | ND  | 30        | 138               | 50              | 140  | 126                 | 50     | 140             |  |
| Ethylbenzene              | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 104               | 60              | 130  | 103                 | 50     | 140             |  |
| Ethylenedibromide         | GCM0283-DEC22 | µg/L  | 0.2 | <0.2   | ND  | 30        | 102               | 60              | 130  | 99                  | 50     | 140             |  |
| n-Hexane                  | GCM0283-DEC22 | µg/L  | 1.0 | <1     | ND  | 30        | 99                | 60              | 130  | 101                 | 50     | 140             |  |
| m/p-xylene                | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 103               | 60              | 130  | 103                 | 50     | 140             |  |
| Methyl ethyl ketone       | GCM0283-DEC22 | ug/L  | 20  | <20    | ND  | 30        | 101               | 60              | 130  | 95                  | 50     | 140             |  |
| Methyl Isobutyl Ketone    | GCM0283-DEC22 | µg/L  | 20  | <20    | ND  | 30        | 101               | 50              | 140  | 94                  | 50     | 140             |  |
| Methyl-t-butyl Ether      | GCM0283-DEC22 | µg/L  | 2.0 | <2     | ND  | 30        | 94                | 60              | 130  | 90                  | 50     | 140             |  |
| Methylene Chloride        | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 102               | 60              | 130  | 102                 | 50     | 140             |  |
| o-xylene                  | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 103               | 60              | 130  | 103                 | 50     | 140             |  |
| Styrene                   | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 103               | 60              | 130  | 104                 | 50     | 140             |  |
| Tetrachloroethylene       | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 96                | 60              | 130  | 100                 | 50     | 140             |  |
| (perchloroethylene)       | GCM0283-DEC22 |       | 0.5 | <0.5   | ND  | 30        | 100               | 60              | 130  | 103                 | 50     | 140             |  |
| Toluene                   |               | μg/L  |     |        |     |           |                   |                 |      |                     |        |                 |  |
| trans-1,2-Dichloroethene  | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 99                | 60              | 130  | 103                 | 50     | 140             |  |
| trans-1,3-Dichloropropene | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 102               | 60              | 130  | 100                 | 50     | 140             |  |
| Trichloroethylene         | GCM0283-DEC22 | µg/L  | 0.5 | <0.5   | ND  | 30        | 100               | 60              | 130  | 101                 | 50     | 140             |  |
| Trichlorofluoromethane    | GCM0283-DEC22 | µg/L  | 5.0 | <5     | ND  | 30        | 108               | 50              | 140  | 105                 | 50     | 140             |  |
| Vinyl Chloride            | GCM0283-DEC22 | µg/L  | 0.2 | <0.2   | ND  | 30        | 116               | 50              | 140  | 118                 | 50     | 140             |  |



#### QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

**RL: Reporting limit** 

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

**Duplicate Qualifier**: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

#### LEGEND

#### **FOOTNOTES**

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

| Relinquis                                                                                                                                                                                     | Sampled                         | Observati                                  | 12      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 | 8                                                                                                                | 7 | 6     | σī                | 4           | ω    | 2    | <u> </u>                                 |                                                                                                    |                                | Soil                                        | Table 3                  | Table 2                     | 0.R                    |             | Email:                                                                                                                     | Phone:<br>Fax:                                                                                                                                                                  |                                                                         | Address:                       | Company:                          |                     | Received By:<br>Received Date:<br>Received Time:                            |                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------|---|-------|-------------------|-------------|------|------|------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|--------------------------|-----------------------------|------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|-----------------------------------|---------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Relinquished by (NAME): And & Complete to SCS is achamical and that you have been accurated allocation and analysis                                                                           | Sampled By (NAME): And sow Kern | Observations/Comments/Special Instructions |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second s |   |                                                                                                                  |   | 1     | TRIP Blank        | 200-2       | BHZ  | BHJ  | BH 1                                     | SAMPLE IDENTIFICATION                                                                              | RECORD OF SITE CONDITION (RSC) | Soil Volume <a></a> <350m3 <a>&gt;350m3</a> | e Agri/Other Medium/Fine | e 2 Ind/Com Coarse          | 153/04                 |             | Utran Ogrounderleng, Ca                                                                                                    |                                                                                                                                                                                 |                                                                         | 1 Banigar D'                   | UIUI TRAN                         | REPORT INFORMATION  | By: 12 . []                                                                 |                                                                                                                   |
| Kesnesner                                                                                                                                                                                     | cesnemen                        |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   | N. N. |                   | <           |      |      | 12/16/22                                 | DATE<br>SAMPLED                                                                                    | UXES [                         | ODWS Not                                    | MISA                     | PWQO                        | Other Regulations:     | REGULATIONS | Email:                                                                                                                     | Phone:                                                                                                                                                                          | Address:                                                                | Contact:                       | Company:                          | N                   | ×                                                                           | - London: 657 Consortium Court, London, oN, N6E 288 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 |
| F                                                                                                                                                                                             |                                 |                                            | As pro- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       |                   | 12:00       | 2:00 | 1:00 | 12:00                                    | TIME<br>SAMPLED                                                                                    | NO                             | ODWS Not Reportable *See note               | Other:                   | PWQO MMER                   | tions:                 |             |                                                                                                                            |                                                                                                                                                                                 |                                                                         |                                | as Report Information)            | INVOICE INFORMATION | Received By (signature):<br>Custody Seal Present: `<br>Custody Seal Intact: | sortium Court, L                                                                                                  |
| Signature:                                                                                                                                                                                    | Signature:                      |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       |                   | 6           | 10   | б    | 10                                       | # OF<br>BOTTLES                                                                                    |                                | e note                                      | Munic                    |                             | 1                      |             |                                                                                                                            |                                                                                                                                                                                 |                                                                         |                                | tion)                             | RMATION             | signature):<br>Present: Yes<br>Intact: Yes                                  | ondon, ON, Ne                                                                                                     |
|                                                                                                                                                                                               |                                 |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                  |   |       |                   |             | GW   | 6W   | GW                                       | MATRIX                                                                                             |                                |                                             | Municipality:            | Storm                       | Sewer By-Law:          |             |                                                                                                                            |                                                                                                                                                                                 |                                                                         |                                |                                   |                     | 4-11                                                                        | E 2S8 Phone:                                                                                                      |
|                                                                                                                                                                                               | 00                              |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       |                   | *           | XX   | Y X  | Y X                                      | Field Filtered (<br>Metals & Inor<br>incl CrVI, CN,Hg pH,(B(H)<br>(CI, Na-water)<br>Full Metals St | gan<br>ws),e                   | ics                                         | !–soil)                  |                             | M &                    |             | Specify Due Date                                                                                                           | RUSH TAT (Additional Charges May Apply):<br>PLEASE CONFIRM RUSH FEASIBILITY WITH                                                                                                | LARegu                                                                  | Ļ                              | Quotation #:<br>Project #:        |                     | Te                                                                          | 8 Phone: 519-672-4500 Toll Free: 877-848-8060 F                                                                   |
|                                                                                                                                                                                               |                                 |                                            |         | 1.4 (2.15 (2.15))<br>(1.15) (2.15) (2.15)<br>(2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15) (2.15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       |                   |             |      |      |                                          | ICP metals plus B(HWS-su<br>ICP Metals onl<br>Cr,Co,Cu,Pb,Mo,Ni,Se,Ag,                             | y St                           | ,As,B                                       | 1000                     |                             |                        |             | ate:                                                                                                                       | Iditional Cha                                                                                                                                                                   | L Regular TAT (5-7days)                                                 |                                | -66                               |                     | Cooling Agent Present: Ye<br>Temperature Upon Receipt                       | oll Free: 877-8                                                                                                   |
| nomelon (2) Sub                                                                                                                                                                               |                                 |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       |                   | <u>×`</u>   | X    | ~    | 7.                                       | PAHs only<br>SVOCs<br>all incl PAHs, ABNs, CPs<br>PCBs Total                                       |                                |                                             | Aroclor                  |                             | SVOC PCB               | 1200        |                                                                                                                            | arges May A <sub>l</sub><br>FEASIBILITY                                                                                                                                         | days)                                                                   |                                | bte                               |                     |                                                                             | 148-8060 Fax: 5                                                                                                   |
|                                                                                                                                                                                               |                                 |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       |                   | ×           | X    | 7.   | ×                                        | F1-F4 + BTEX                                                                                       |                                |                                             |                          |                             | B PHC                  | 15          | *N0                                                                                                                        | WITH SGS I                                                                                                                                                                      |                                                                         | T                              |                                   |                     | F Z                                                                         | ax: 519-672-0361<br>use only                                                                                      |
| Date:                                                                                                                                                                                         | Date:                           |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       | ×                 | ×           | 7.   | ×    | ×                                        | VOCs<br>all incl BTEX<br>BTEX only                                                                 |                                |                                             |                          |                             | VOC                    |             | TE: DRINKING                                                                                                               | L 1 Day REPRESENT                                                                                                                                                               |                                                                         | URNAROUN                       |                                   | -                   | Type:                                                                       |                                                                                                                   |
| VZ / L                                                                                                                                                                                        | 12/1                            |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       | C                 | 1 onlaws    |      |      |                                          | Pesticides<br>Organochlorine or specil                                                             | fy othe                        | ər                                          |                          |                             | Pest                   | REQUESTED   | (POTABLE)<br>WITH                                                                                                          | 2 Days                                                                                                                                                                          | San                                                                     | D TIME (TAT                    | 0 1                               |                     | R.                                                                          |                                                                                                                   |
| 16 122                                                                                                                                                                                        | 16, 22                          |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       | ÷                 | husis dus a |      |      |                                          |                                                                                                    |                                |                                             |                          |                             | Other (please specify) |             | ABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC<br>WITH SGS DRINKING WATER CHAIN OF CUSTODY                                       | RUSH TAT (Additional Charges May Apply):       1 Day       2 Days       3 Days       4 Days         PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION | tples received af.                                                      | TURNAROUND TIME (TAT) REQUIRED | P.O. #:<br>Site Location/ID: 1095 |                     |                                                                             |                                                                                                                   |
| Signature: ( Date: 12 / 16 / 22 (mm/dd/yy) Yellow & White Coperation of samples to SGS is considered authorization for completion of work. Storautures may anone on this form or be relatined | (mm/dd/yy)                      |                                            | 22      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       |                   | per         |      |      |                                          |                                                                                                    | ended                          | 1                                           |                          | 14                          |                        |             | ES FOR HUMAI                                                                                                               | 1 Days<br>SION                                                                                                                                                                  | ter 6pm or on w                                                         | vicinace dave (e               |                                   |                     | LAB LIN                                                                     |                                                                                                                   |
| n may annear on th                                                                                                                                                                            |                                 |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                  |   |       |                   |             |      |      |                                          | Docume<br>Docume<br>Doc<br>ABN<br>ABN<br>DABN<br>Dignit                                            |                                | 0                                           |                          | Specify Specify tests tests | SPLP TCLP              |             | I OF CUSTODY                                                                                                               |                                                                                                                                                                                 | eekends: TAT b                                                          | e exclude statutor             | Kangslein                         |                     | LAB LIMS #CA40185                                                           |                                                                                                                   |
| 22 (mm/dd/yy) Yellow & White Copy - SGS                                                                                                                                                       | Pink Copy - Client              |                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | and the second |   |       | The second second |             |      |      | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                                                                                                    | COMINICIAL C.                  | COMMENT                                     |                          |                             |                        |             | NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED<br>WITH SGS DRINKING WATER CHAIN OF CUSTODY |                                                                                                                                                                                 | Samples received after 6pm or on weekends: TAT begins next business day | r holidave & weekende          | Rd. Pickan                        |                     | 185-Dec 22                                                                  | Page of                                                                                                           |

# **APPENDIX G**





# PHASE TWO CONCEPTUAL SITE MODEL

1095 Kingston Road | Pickering, Ontario

### PREPARED FOR: 1095 Kingston Road Limited 22 St. Clair Avenue East, Suite 1203 Toronto, Ontario M4T 2S5

ATTENTION: Tom Bosnjak

Grounded Engineering Inc.File No.22-279IssuedFebruary 14, 2024



# TABLE OF CONTENTS

| 1 | INTR<br>1.1<br>1.2                                          | ODUCTION<br>SITE DESCRIPTION<br>PROPERTY OWNERSHIP                                                                                                                                                                                                                                                           | 1                                    |  |  |  |  |
|---|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
|   | 1.2                                                         | SUMMARY OF PREVIOUS INVESTIGATIONS                                                                                                                                                                                                                                                                           |                                      |  |  |  |  |
| 2 | INFO<br>2.1<br>2.2<br>2.3                                   | RMATION FROM THE PHASE ONE ENVIRONMENTAL SITE ASSESSMENT<br>Areas Where Potential Contaminating Activity Has Occurred<br>Areas of Potential Environmental Concern<br>Subsurface Structures and Utilities                                                                                                     | 3<br>4                               |  |  |  |  |
| 3 | PHYS<br>3.1                                                 | SICAL SETTING OF THE PHASE TWO PROPERTY<br>STRATIGRAPHY<br>3.1.1 Geological Unit Thickness<br>3.1.2 Elevations of Geological Units<br>3.1.3 Material in Geological Units                                                                                                                                     | 5<br>6<br>6                          |  |  |  |  |
|   | 3.2<br>3.3<br>3.4                                           | APPROXIMATE DEPTH TO WATER TABLE                                                                                                                                                                                                                                                                             | 7<br>8                               |  |  |  |  |
|   | 3.5<br>3.6                                                  | O.REG. 153/04 SECTION 35<br>O.REG. 153/04 SECTION 41                                                                                                                                                                                                                                                         | 8<br>9                               |  |  |  |  |
|   | 3.7<br>3.8<br>PLAC<br>3.9                                   | O.REG. 153/04 SECTION 43.1<br>AREAS ON, IN OR UNDER THE PHASE TWO PROPERTY WHERE EXCESS SOIL IS FINALL<br>ED<br>PROPOSED BUILDINGS                                                                                                                                                                           | .Y<br>9                              |  |  |  |  |
| 4 |                                                             | TAMINATION IN OR UNDER THE PHASE TWO PROPERTY         APPLICABLE SITE CONDITION STANDARD         MEDIA INVESTIGATED         SAMPLING RATIONALE AND AREAS WHERE CONTAMINANTS ARE PRESENT         4.3.1       Location and Depth of Soil Samples         4.3.2       Location and Depth of Groundwater Samples | .10<br>.10<br>.11<br>.12<br>13<br>14 |  |  |  |  |
|   | 4.4<br>4.5<br>4.6<br>4.7                                    | Additional pH sampling in Soil<br>MPTION OF EXCEEDANCES (O.REG. 153/04 SEC 49.1)<br>MAMINANTS ASSOCIATED WITH EACH AREA<br>DIUM IN WHICH CONTAMINANTS ARE ASSOCIATED<br>DRMATION KNOWN ABOUT EACH CONTAMINATED AREA                                                                                          |                                      |  |  |  |  |
|   | <ul><li>4.8</li><li>4.9</li><li>4.10</li><li>4.11</li></ul> | DISTRIBUTION OF CONTAMINANT<br>CLIMATIC OR METEOROLOGICAL INFLUENCES ON MIGRATION<br>SOIL VAPOUR INTRUSION INTO BUILDINGS<br>RELEVANT CONSTRUCTION FEATURES OF BUILDINGS                                                                                                                                     | .16<br>.16<br>.16                    |  |  |  |  |
|   | 4.12                                                        | Building HVAC                                                                                                                                                                                                                                                                                                |                                      |  |  |  |  |

|   | 4.13 | SUBSURFACE STRUCTURES AND UTILITIES     | 17 |
|---|------|-----------------------------------------|----|
| 5 | POT  | ENTIAL EXPOSURES PATHWAYS AND RECEPTORS | 17 |
|   | 5.1  | DESCRIPTION OF ALL COMPONENTS           | 17 |
|   | 5.2  | RECEPTOR HUMAN HEALTH                   | 18 |
|   | 5.3  | RECEPTOR TERRESTRIAL ENVIRONMENT        | 19 |
|   | 5.4  | RECEPTOR AQUATIC ENVIRONMENT            | 19 |
|   | 5.5  | SUMMARY OF POTENTIAL RECEPTOR RISKS     | 19 |

### **FIGURES**

- Figure 1 Site Location
- Figure 2 PCA Locations
- Figure 3 APEC Locations
- Figure 4 Boreholes Location Plan
- Figure 5 Groundwater Elevations and Contours
- Figure 6 Soil Sampling Locations
- Figure 7 Groundwater Sampling Locations
- Figure 8 Soil and Groundwater Sampling Locations Section A A'
- Figure 9 Soil and Groundwater Sampling Locations Section B B'
- Figure 10 Human Health Conceptual Site Model
- Figure 11 Ecological Conceptual Site Model

### TABLES

Table 1 – Groundwater Level Monitoring Summary



# 1 Introduction

### 1.1 Site Description

The Phase Two Property is located at the municipal address of 1095 Kingston Road, Pickering, Ontario (the Property). The site location is presented in Figure 1.

The Property is irregular in shape, with a total area of 2.09016 ha. The Property is bounded by Kingston Road to the west and Dixie Road to the east. The Property is currently developed with a slab-on-grade multi-tenant commercial building surrounded by an asphalt surface parking lot. The Property is considered to be in commercial land use as defined by the Ministry of the Environment, Conservation and Parks (MECP) Ontario Regulation (O.Reg.) 153/04.

It is understood that the Phase Two Property will be developed with three (3) new residential highrise buildings with a 3-storey podium structure, constructed in two phases; Phase 1 comprising Towers 1 and 2 with a combined podium on the south side of the Property, and Phase 2 comprising Tower 3 with a separate podium structure on the north side of the Property. It is understood that consideration is being given to two (2) or three (3) levels of below grade parking beneath each of the phases (P2 or P3), or alternatively constructing the development on-grade with above-grade parking only. Under O.Reg. 153/04, the future land use of the Property would be considered residential.

### 1.2 Property Ownership

| Municipal Address          | 1095 Kingston Road, Pickering, Ontario, L1V 1B5                                                                                                                                              |  |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Legal Description          | PT LT 25 CON 1 PICKERING PTS 1, 2 & 3, 40R1860 EXCEPT PT 1, 40R2670<br>AND CO210581; S/T D486756, *S/T D19631* AS PARTIALLY RELEASED BY<br>D314762; PICKERING. *ADDED 2000 03 13 BY T.CUTLER |  |  |  |  |
| PIN(s)                     | 26317-0068 (LT)                                                                                                                                                                              |  |  |  |  |
| Assessment Roll Number     | 1801010 01821300                                                                                                                                                                             |  |  |  |  |
| Area                       | 2.09016 ha                                                                                                                                                                                   |  |  |  |  |
| Zone Northing Easting      | 17 T 4854442.54 N 652876.22 E                                                                                                                                                                |  |  |  |  |
| Property Owner Information | 1095 Kingston Road Ltd.                                                                                                                                                                      |  |  |  |  |

The Property information is provided below:



# **1.3 Summary of Previous Investigations**

The following environmental reports were provided for review for the Property. The findings of the reports are summarized below:

| Title and File No.                              | Phase 1 Environmental Site Assessment 1095 Kingston Road, Pickering, ON (File No. 5947-01.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Report Date                                     | December 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Prepared By                                     | PGL Environmental Consultants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Prepared for                                    | 1585708 Ontario Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Description of Data,<br>Analysis or<br>Findings | <ul> <li>The Phase I ESA was completed for the purposes of due diligence for refinancing the Property.</li> <li>The Phase I ESA was generally completed in accordance with CSA Standard Z768-01.</li> <li>At the time of the site inspection completed on December 12, 2019, the Property was occupied by a two-storey multi-unit commercial building. The Property was reportedly heated by a natural gas-fired HVAC unit.</li> <li>Hazardous materials such as motor oils, lubricants, hydraulic oil, and other various liquids used for vehicle maintenance were reportedly identified in the unit occupied by Part Source (an automotive parts retailer with retail area and storage room). However, no on-site vehicle maintenance was reportedly being completed at that time. As such, PGL considered these materials not to be an environmental</li> </ul> |  |  |  |  |  |
|                                                 | <ul> <li>There were no significant potential environmental concerns reportedly identified in the report.</li> <li>The report identified potential designated substances and special attention items to be considered prior to any renovation or demolition:         <ul> <li>Lead and asbestos in building materials</li> <li>PCBs in light ballasts</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

| Title and File No.                      | Phase One Environmental Site Assessment 1095 Kingston Road, Pickering, Ontario. (File No. 22-279) |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Report Date January 16, 2024 (Rev. 1.0) |                                                                                                   |  |  |
| Prepared By                             | Grounded Engineering Inc.                                                                         |  |  |
| Prepared for                            | 1095 Kingston Road Ltd.                                                                           |  |  |



|                                     | <ul> <li>The Phase One ESA was completed for the purposes of due diligence during<br/>acquisition of the Property.</li> </ul>                                                                                                                                                                                           |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | <ul> <li>The Phase One ESA was completed in accordance with Ontario Regulation<br/>153/04.</li> </ul>                                                                                                                                                                                                                   |
|                                     | • At the time of inspections in November 2022 and January 2024, the Property was occupied by a slab-on-grade multi-tenant commercial building (End of the Roll, Parts Source, Treehouse Club, Tasco Appliances, and Tile House) with an asphalt surface parking lot surrounding the building, reportedly built in 1975. |
|                                     | <ul> <li>Part Source was observed to not have any on-site vehicle maintenance<br/>operations and was limited to commercial retail of automotive parts and<br/>supplies only.</li> </ul>                                                                                                                                 |
| Description of Data,<br>Analysis or | <ul> <li>Interviews completed for the Phase One ESA indicated that no onsite<br/>vehicle maintenance was ever completed by this tenant historically.</li> </ul>                                                                                                                                                         |
| Findings                            | • The commercial building was reportedly heated by a natural gas-fired HVAC unit.                                                                                                                                                                                                                                       |
|                                     | <ul> <li>Due to the age and construction of the building, the presence of asbestos and<br/>lead-based paints were suspected.</li> </ul>                                                                                                                                                                                 |
|                                     | <ul> <li>The Phase One ESA identified two (2) Areas of Potential Environmental Concern<br/>(APECs).</li> </ul>                                                                                                                                                                                                          |
|                                     | <ul> <li><u>APEC 1 (Entire Phase One Property)</u>: associated with importation of fill<br/>material of unknown quality during the development of the Property.</li> </ul>                                                                                                                                              |
|                                     | <ul> <li><u>APEC 2 (Entire Phase One Property)</u>: associated with de-icing activities<br/>on the Property.</li> </ul>                                                                                                                                                                                                 |
|                                     | <ul> <li>Based on the Phase One ESA, a Phase Two ESA was required to investigate the<br/>APECs identified prior to submission for a Record of Site Condition (RSC).</li> </ul>                                                                                                                                          |

# 2 Information from the Phase One Environmental Site Assessment

### 2.1 Areas Where Potential Contaminating Activity Has Occurred

Potential Contaminating Activity (PCAs) were identified in the Phase One ESA completed for the Property. The information regarding whether the PCAs have the potential to cause Areas of Potential Environmental Concerns (APECs) is provided below. It is noted that the groundwater flow in the Phase One ESA was assumed to be south/southwest towards the nearby creek.

| Location of PCA | PCA                                             | APEC<br>(Yes/No) | Rationalization                                                                                                                                                                                                       |
|-----------------|-------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entire Property | #30 – Importation of Fill of<br>Unknown Quality | Yes<br>(APEC 1)  | Fill of unknown quality was likely imported<br>and used at the Property for minor<br>backfilling, grading, etc. during the<br>construction of the commercial building in<br>1975. The PCA is likely to cause an APEC. |



| Location of PCA                      | PCA                                   | APEC<br>(Yes/No) | Rationalization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|---------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entire Property                      | Other 1 – De-icing<br>Activities      | Yes<br>(APEC 2)  | The Property is bounded by Kingston Road<br>to the west and Dixie Road to the northeast,<br>each with accompanying sidewalks. Surface<br>parking spots and walkways were also<br>observed on the Property. During the winter<br>months, a de-icing substance (salt) may<br>have been applied to the parking spots,<br>surrounding asphalt where the commercial<br>building exists, surrounding roads and<br>sidewalks for safety purposes. The<br>application of salts on the Property has the<br>potential to cause an APEC at the Property. |
| No address<br>28 m South             | #46 – Rail Yards, Tracks<br>and Spurs | No               | Canadian National Railway tracks (elevated<br>above ground) was observed in aerials and<br>during the site reconnaissance. Based on<br>the down/cross-gradient location from the<br>Phase One Property and the clayey silt<br>overburden soils in the area, potential<br>groundwater contamination from this PCA is<br>unlikely to impact the Property. It is the<br>opinion of the QP that this PCA is unlikely to<br>cause an APEC on the Property.                                                                                         |
| 980 Kingston Road<br>300 m Southwest | #10 – Commercial<br>Autobody Shops    | No               | Based on the city directory search, a<br>historical auto garage (Saturn Saab Isuzu of<br>Pickering) operated on the site in 1995 -<br>2000. Based on the distance from the Phase<br>One Property, potential groundwater<br>contamination is unlikely to impact the<br>Property. It is the opinion of the QP that this<br>PCA is unlikely to cause an APEC on the<br>Property.                                                                                                                                                                 |

The locations of the PCAs and APECs are shown on Figure 2. The PCAs that were deemed to cause APECs are listed in Section 2.2 below.

### 2.2 Areas of Potential Environmental Concern

The following APECs resulting from PCAs were identified on the Property and shown on Figure 2.

| Areas of<br>Potential<br>Environmental<br>Concern<br>(APECs) | Location of<br>APECs on Phase<br>One Property | APECs on Phase PCA                                          |                                      | Media Potentially Impacted<br>(Groundwater, soil and/or<br>sediment) ** |
|--------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------|
| APEC 1                                                       | Entire Property                               | #30 - Importation of<br>Fill Material of<br>Unknown Quality | Metals<br>As, Sb, Se<br>B-HWS<br>CN- | Soil<br>Soil<br>Soil<br>Soil                                            |



| Areas of<br>Potential<br>Environmental<br>Concern<br>(APECs) | Location of<br>APECs on Phase<br>One Property | PCA                | Contaminants of<br>Potential Concern<br>(CoPCs) | Media Potentially Impacted<br>(Groundwater, soil and/or<br>sediment) ** |
|--------------------------------------------------------------|-----------------------------------------------|--------------------|-------------------------------------------------|-------------------------------------------------------------------------|
|                                                              |                                               |                    | Hg                                              | Soil                                                                    |
|                                                              |                                               |                    | Cr(VI)                                          | Soil                                                                    |
|                                                              |                                               |                    | PAHs                                            | Soil                                                                    |
|                                                              |                                               |                    | PHCs                                            | Soil                                                                    |
|                                                              |                                               |                    | VOCs                                            | Soil                                                                    |
|                                                              |                                               |                    | BTEX                                            | Soil                                                                    |
| APEC 2                                                       | Entire Property                               | Other 1 - De-icing | EC                                              | Soil                                                                    |
|                                                              |                                               | Activities         | SAR                                             | Soil                                                                    |

\*\*Based on well records reviewed in the Phase One ESA, the depth of groundwater was beyond 10 m bgs. Therefore, groundwater was not considered a media of concern.

### 2.3 Subsurface Structures and Utilities

The site inspection of the Property and utility locates conducted as part of the Phase One ESA found the following information regarding utilities and services at the Property:

- Buried hydro enters the Property via west from Kingston Road
- Gas line enters the Property via west from Kingston Road
- Buried communication line enters the Property via west from Kingston Road
- Buried electrical line runs from the west side of the building to Kingston Road and via west of Dixie Road

It is possible that the bedding materials for the underground utilities could serve as preferential pathways for the migration of CoPCs; however, as the stabilized groundwater levels reported in well records to be beyond 5 m below ground surface, it is unlikely that the utilities will intersect the groundwater table.

# **3** Physical Setting of the Phase Two Property

### 3.1 Stratigraphy

Detailed geological information for the Property is presented on the geologic cross sections shown in Figures 8 and 9. The geology at the Property is summarized below.



| Geological Unit Thickness (Estimate)          |                     |  |  |  |  |  |
|-----------------------------------------------|---------------------|--|--|--|--|--|
| Borehole                                      | BH1 to BH3          |  |  |  |  |  |
|                                               | Thickness Range (m) |  |  |  |  |  |
| Surficial Materials                           | 0 to 0.2            |  |  |  |  |  |
| Earth Fill                                    | 0.2 to 4.6          |  |  |  |  |  |
| Sand and Silt to Sandy<br>Silt (Glacial Till) | 1.1 to 10.7         |  |  |  |  |  |
| Sand to Silty Sand<br>(Sand unit)             | 9.1 to 16.8         |  |  |  |  |  |
| Clayey Silt                                   | 16.8 to 18.3        |  |  |  |  |  |
| Bedrock                                       | 13.7 to 18.8        |  |  |  |  |  |

### 3.1.2 Elevations of Geological Units

| Geological Unit Elevations                    |                        |                           |  |  |  |  |  |  |
|-----------------------------------------------|------------------------|---------------------------|--|--|--|--|--|--|
| Devekala                                      | BH1 to BH3             |                           |  |  |  |  |  |  |
| Borehole                                      | Elev. Top Range (masl) | Elev. Bottom Range (masl) |  |  |  |  |  |  |
| Surficial Materials                           | 88.5 to 87.4           | 88.3 to 87.2              |  |  |  |  |  |  |
| Earth Fill                                    | 88.3 to 87.2           | 87.4 to 83.1              |  |  |  |  |  |  |
| Sand and Silt to Sandy<br>Silt (Glacial Till) | 87.4 to 83.1           | 79.1 to 73.7              |  |  |  |  |  |  |
| Sand to Silty Sand<br>(Sand unit)             | 79.1 to 73.7           | 75.5 to 71.7              |  |  |  |  |  |  |
| Clayey Silt                                   | 71.7                   | 70.2                      |  |  |  |  |  |  |
| Bedrock                                       | 74.0                   | N/A                       |  |  |  |  |  |  |



### 3.1.3 Material in Geological Units

| Geological Units                              | Description                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surficial Materials                           | All boreholes encountered a pavement structure consisting of 150 mm asphaltic concrete.                                                                                                                                                                                                                                                           |
| Earth Fill                                    | Earth fill was encountered at all borehole locations and underlying the pavement structure. The earth fill extended to a depth of 1.1 to 4.6 mbgs (Elev. 87.4 to 83.1 masl). The earth fill generally consisted of clayey silt with some sand and trace-some amount of gravel. The earth fill was typically brown and moist.                      |
| Sand and Silt to Sandy Silt<br>(Glacial Till) | Underlying the fill materials, sand and silt to sandy silt tills were encountered.<br>The sand and silt to sandy silt tills extended to a depth of 9.1 to 10.7 m (Elev.<br>79.1 to 77.0 m). The sand and silt to sandy silt till generally consisted of clayey<br>to some clay, trace gravel and rock fragments. It was generally grey and moist. |
| Sand to Silty Sand (Sand unit)                | Underlying the silts, sand to silty sand was encountered at all borehole locations.<br>The sand to silty sand extended to a depth of 12.2 to 16.8 m (Elev. 75.5 to 71.7 m). The sand to silty sand generally consisted of trace amounts of clay, gravel and rock fragments. It was generally grey and wet.                                        |
| Clayey Silt                                   | Underlying the sands, clayey silt was encountered at BH3. The clayey silt extended to a depth of 16.8 to 18.3 m (Elev. 71.7 to 70.2 m). The clayey silt generally consisted some sand with trace gravel, and shale fragments. It was generally grey and moist.                                                                                    |
| Bedrock                                       | Bedrock was encountered at a depth of 13.7 mbgs (Elev. 74.0 m).                                                                                                                                                                                                                                                                                   |

### 3.2 Approximate Depth to Water Table

A total of three (3) monitoring wells have been installed by Grounded. Screened intervals of the monitoring wells were selected for the collection of groundwater samples within the desired strata based on moisture contents observed during the field investigation.

Three groundwater level measurements were conducted by Grounded in the newly installed monitoring wells using a Solinst interface probe on the following dates:

- November 23, 2022
- January 12, 2024
- January 16, 2024

To calculate the groundwater elevation in the monitoring well, the following calculation was completed:

 Geodetic Ground Elevation (masl) – Measured Depth to Water Table (m) + Stick up of Well (m) = Groundwater Elevation (masl)



No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) or free-flowing products were detected on the Property. The groundwater levels are presented in Table 1 and Figure 5.

Based on the groundwater elevations measured on the Property, a single unconfined aquifer is present within the lower glacial till extending into the underlying sand unit. The shallowest groundwater depth was measured at 4.9 mbgs (82.5 masl) in BH1 on January 16, 2024. The groundwater flow in the aquifer was determined to flow locally to the west. Regional groundwater flow is expected to flow to the south towards Frenchman's Bay. Groundwater contours are presented in Figure 5.

Additional groundwater data will be required to assess seasonal variability in groundwater quantity and flow direction; however, it based on the groundwater levels from 2022 to 2024, variability is expected to be limited.

### 3.3 Site Hydrogeological Characteristics

| Horizontal<br>Hydraulic Gradients                                                                                                  | The horizontal hydraulic gradient at the Property was determined to be approximately 0.002 m/m based on the groundwater levels in boreholes BH1 & BH2.                                                                                                                                                                                           |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Vertical Hydraulic<br>Gradients         Based on the location and depths of the installed monitoring wells, the vertical gradients |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Hydraulic<br>Conductivity                                                                                                          | Earth fill – 1.0 x 10 <sup>-6</sup> m/s (published literature values in Freeze and Cherry, 1979)<br>Sand and Silt to Sandy Silt (Glacial Till) - 9.09 × 10 <sup>-7</sup> (based on in-situ single well response<br>test)<br>Sand to Silty Sand – 5.43 × 10 <sup>-5</sup> to 9.61 × 10 <sup>-5</sup> (based on in-situ single well response test) |  |  |  |  |
|                                                                                                                                    | Clayey Silt – 1.0 x 10 <sup>-8</sup> to 1.0 x 10 <sup>-10</sup> (published literature values in Freeze and Cherry, 1979)                                                                                                                                                                                                                         |  |  |  |  |

### 3.4 Approximate Depth to Bedrock

Based on the subsurface investigation, bedrock was encountered at a depth of 13.7 mbgs (Elev. 74.0 m).

### 3.5 O.Reg. 153/04 Section 35

Section 35(2) of the Regulation <u>does not apply</u> to the Phase Two Property based on the following rationale:

- The Property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the property, are supplied by a municipal drinking water system, as defined in the Safe Drinking Water Act, 2002.
  - However, municipal water supply is from regional groundwater supply wells as well as surface water sources.

- The record of site condition does not specify agricultural or other use as the type of property use for which the record of site condition is filed.
- The Property is <u>not</u> located in an area designated in the municipal official plan as a wellhead protection area or other designation identified by the municipality for the protection of groundwater.
- Neither the Property nor any of the properties in the Phase One study area has a well used or intended for use as a source of water for human consumption or agriculture.

### 3.6 O.Reg. 153/04 Section 41

Section 41 of the Regulation <u>does not apply</u> to the Phase Two Property based on the following rationale:

- The Property is not located within an area of natural significance;
- The Property does not include or is not adjacent to an area of natural significance or part of such an area;
- The Property does not include land that is within 30 m of an area of natural significance or part of such an area;
- The surface soil at the Property has a pH value that is not less than 5 or greater than 9; and
- The sub-surface soil at the Property has a pH value that is not less than 5 or greater than 11.

### 3.7 O.Reg. 153/04 Section 43.1

Section 43.1 of the Regulation <u>does not apply</u> to the Phase Two Property based on the following rationale:

- The Property is not considered a shallow soil property; or
- The Property does not include all or part of a water body and is not adjacent to a water body and does not include land that is within 30 m of a water body.

# 3.8 Areas On, In or Under the Phase Two Property Where Excess Soil is Finally Placed

No excess soils have been imported or place on, in or under the Phase Two Property since the site reconnaissance completed for the Phase One ESA in November 11, 2022 and January 12, 2024.



### 3.9 **Proposed Buildings**

It is understood that the Property will be developed with three (3) new residential high-rise buildings with a 3-storey podium structure, constructed in two phases; Phase 1 comprising Towers 1 and 2 with a combined podium on the south side of the Property, and Phase 2 comprising Tower 3 with a separate podium structure on the north side of the Property. It is understood that consideration is being given to two (2) or three (3) levels of below grade parking beneath each of the phases (P2 or P3), or alternatively constructing the development on-grade with above-grade parking only.

# 4 Contamination In or Under the Phase Two Property

### 4.1 Applicable Site Condition Standard

The applicable site condition standard for the Property was determined to be the Table 2 Full Depth Generic Site Condition Standards for Use in a Potable Ground Water Condition for Residential/Parkland/Institutional for medium to fine-textured soil due to the following reasons:

| Current Land Use                                                                                          | Commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Future Land Use                                                                                           | Residential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Soil Texture                                                                                              | Medium to fine based on grain size analysis performed on the soil.<br>Based on the results of 7 grain size analyses, all soil samples contained 50 percent or more by mass of particles that are smaller than 75 micrometres in mean diameter. As such, the qualified person has determined that less than 1/3 of the soil at the property, measured by volume, consists of coarse textured soil, and therefore the qualified person has applied the standard for medium and fine textured soil. |
| Potable Water Source                                                                                      | Municipal service/municipal water supply is from s combination of regional groundwater supply wells and surface water sources.                                                                                                                                                                                                                                                                                                                                                                   |
| Bedrock Depth                                                                                             | Bedrock is located at a depth of greater than 2 m.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Property located within 30 m of a surface water body (Yes/No)                                             | Νο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Property located in or adjacent<br>to a provincial park or an Area<br>of Natural Significance<br>(Yes/No) | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



## 4.2 Media Investigated

Grounded conducted the following specific subsurface work at the Property:

|                                   | Grounded Drilling Investigation (November 2022):                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | <ul> <li>Advancing of three (3) boreholes (BH1-BH3) to depths of 15.7 to 19.4 m below<br/>ground surface (m bgs)</li> </ul>                                                                                                                                                                                                                                                      |
|                                   | Installation of three (3) monitoring wells (BH1-BH3)                                                                                                                                                                                                                                                                                                                             |
|                                   | Grounded Drilling Investigation (December 2022):                                                                                                                                                                                                                                                                                                                                 |
| Boreholes and<br>Monitoring Wells | <ul> <li>Five (5) shallow boreholes (BH1A, BH1B and BH2A-BH2C) to depths of 1.5 to 3.0<br/>mbgs to confirm soil quality:</li> </ul>                                                                                                                                                                                                                                              |
|                                   | <ul> <li>BH1A and BH1B were advanced to confirm pH quality at this location see<br/>Section 4.3.3).</li> </ul>                                                                                                                                                                                                                                                                   |
|                                   | <ul> <li>BH2A to BH2C were advanced to confirm PHC (F1-F4) concentrations at<br/>this location in the fill as this location had initially had the detectable (<i>but</i><br/><i>not exceeding</i>) concentrations for PHC F3 onsite, likely due to sampling<br/>error. All additional samples reported non-detectable or concentrations<br/>well below the standards.</li> </ul> |
|                                   | The following parameters were investigated based on the CoPCs identified in the Phase<br>One ESA:                                                                                                                                                                                                                                                                                |
|                                   | Grounded Drilling Investigation (November 2022):                                                                                                                                                                                                                                                                                                                                 |
|                                   | • M                                                                                                                                                                                                                                                                                                                                                                              |
|                                   | • H-M                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | o Sb, As, Se                                                                                                                                                                                                                                                                                                                                                                     |
| Demonstern                        | • ORPs                                                                                                                                                                                                                                                                                                                                                                           |
| Parameters<br>Investigated for    | <ul> <li>B-HWS, CN-, EC, SAR, Cr(VI), Hg, pH</li> </ul>                                                                                                                                                                                                                                                                                                                          |
| Soil                              | • PAHs                                                                                                                                                                                                                                                                                                                                                                           |
|                                   | • PHCs                                                                                                                                                                                                                                                                                                                                                                           |
|                                   | • BTEX                                                                                                                                                                                                                                                                                                                                                                           |
|                                   | • VOC                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | Grounded Drilling Investigation (December 2022):                                                                                                                                                                                                                                                                                                                                 |
|                                   | ORPs (pH only)                                                                                                                                                                                                                                                                                                                                                                   |
|                                   | • PHCs                                                                                                                                                                                                                                                                                                                                                                           |
|                                   | Based on the depth to the stabilized groundwater table (beyond 5 mbgs) and potential surficial impacts from the identified potentially contaminating activities, the Phase One ESA only identified soil as media potentially impacted.                                                                                                                                           |
|                                   | However, the following parameters were analyzed for during this investigation for due                                                                                                                                                                                                                                                                                            |
| Parameters<br>Investigated for    | diligence purposes only:                                                                                                                                                                                                                                                                                                                                                         |
| Groundwater                       | • M                                                                                                                                                                                                                                                                                                                                                                              |
|                                   | • H-M                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | <ul> <li>Sb, As, Se</li> </ul>                                                                                                                                                                                                                                                                                                                                                   |
|                                   | • ORPs                                                                                                                                                                                                                                                                                                                                                                           |

|                 | <ul> <li>Cr(VI), CN-, Hg, Cl-, pH</li> </ul>                       |
|-----------------|--------------------------------------------------------------------|
|                 | Sodium (Na)                                                        |
|                 | • PAHs                                                             |
|                 | • PHCs                                                             |
|                 | • BTEX                                                             |
|                 | • VOC                                                              |
| • 7 soil sample | es were submitted for grain size analysis and soil classification. |
| All boreholes   | and monitoring wells were surveyed using a Sokkia survey system.   |
| All new moni    | toring wells were developed prior to sampling.                     |

• Groundwater level measurements were conducted in all accessible monitoring wells to determine groundwater elevation on the Property.

### 4.3 Sampling Rationale and Areas Where Contaminants are Present

The table below identified all APECs listed in the Phase One ESA as well as the boreholes that were used to evaluate each APEC. The findings with respect to any contaminant noted are also presented.

| Areas of<br>Potential<br>Environmental<br>Concern<br>(APECs) | Location<br>of APECs<br>on Phase<br>One<br>Property | Potentially<br>Contaminating<br>Activities (PCAs) | Contaminants<br>of Potential<br>Concern<br>(CoPCs) | Media<br>Potentially<br>Impacted<br>(Groundwater,<br>soil and/or<br>sediment) | Borehole<br>or<br>Monitoring<br>Well<br>Associated | Exceedances                          |
|--------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|
| APEC 1                                                       | Entire<br>Property                                  | of Fill Material of                               |                                                    | Soil<br>Soil<br>Soil<br>Soil<br>Soil<br>Soil<br>Soil<br>Soil                  | BH1 – 3                                            | Soil:<br>None<br>Groundwater:<br>N/A |
| APEC 2                                                       | Entire<br>Property                                  | Other 1 - De-icing<br>Activities                  | EC<br>SAR                                          | Soil<br>Soil                                                                  | BH1 – 3                                            | Soil:<br>None<br>Groundwater:<br>N/A |

No exceedances were identified in the potential media of impact i.e., soil identified in the Phase One ESA. The groundwater was also assessed for due diligence purposes in this study and no exceedances were identified.





| O and a lD  | Depth           |               | Strate                | APEC     | M/  | ORPs      | DALL | DUO  | DTEV | N00- |
|-------------|-----------------|---------------|-----------------------|----------|-----|-----------|------|------|------|------|
| Sample ID   | mbgs            | masl          | Strata                | Assessed | H-M | *         | PAHs | PHCs | BTEX | VOCs |
| Grounded Dr | illing Investig | ation (Novemb | er 2022)              |          |     |           |      |      |      |      |
| BH1 SS1     | 0.2 - 0.8       | 87.3 - 86.7   | Fill                  | 1,2      | ~   | ~         |      |      |      |      |
| BH1 SS2     | 0.8 - 1.4       | 86.7 - 86.1   | Fill                  | 1        |     |           | ~    |      |      |      |
| BH1 SS4     | 2.3 - 2.9       | 85.1 - 84.5   | Fill                  | 1,2      | ~   | ~         | ~    | ~    | ~    | ~    |
| BH1 SS10    | 10.7 - 11.3     | 76.8 - 76.1   | Sand and<br>Silt      | 1        |     |           |      | ~    | ~    | ~    |
| BH2 SS1     | 0.2 - 0.8       | 87.5 - 86.9   | Fill                  | 1,2      | ~   | ~         |      |      |      |      |
| BH2 SS2     | 0.8 - 1.4       | 86.9 - 86.3   | Fill                  | 1        |     |           | ~    | ~    | ~    | ~    |
| BH2 SS3     | 1.5 - 2.1       | 86.2 - 85.6   | Fill                  | 1,2      | ~   | ~         | ~    |      |      |      |
| BH2 SS6     | 4.6 - 5.2       | 83.1 - 82.5   | Sand and<br>Silt Till | 1        |     |           |      | ~    | ~    |      |
| BH2 SS9     | 9.1 - 9.8       | 78.6 - 77.9   | Sand and<br>Silt Till | 1        |     |           |      | ~    | ~    | ~    |
| BH3 SS1     | 0.2 - 0.8       | 88.3 - 87.7   | Fill                  | 1,2      | ~   | ~         |      |      |      |      |
| BH3 SS2     | 0.8 - 1.4       | 87.7 - 87.1   | Sand and<br>Silt Till | 1        |     |           | ~    | ~    | ~    | ~    |
| BH3 SS3     | 1.5 - 2.1       | 86.9 - 86.3   | Sand and<br>Silt Till | 1,2      | ~   | ~         |      |      |      |      |
| BH3 SS4     | 2.3 - 2.9       | 86.2 - 85.6   | Sand and<br>Silt Till | 1        |     |           | ~    |      |      |      |
| BH3 SS9A    | 9.1 - 9.4       | 79.3 - 79.0   | Sand and<br>Silt Till | 1        |     |           |      | ~    | ~    | ~    |
| Grounded Dr | illing Investig | ation (Decemb | er 2022)              |          |     |           |      |      |      |      |
| BH1A SS1    | 0.3 - 0.9       | 87.1 - 86.5   | Fill                  | 1        |     | ✓<br>(pH) |      |      |      |      |
| BH1A SS2    | 0.9 - 1.5       | 86.5 - 85.9   | Fill                  | 1        |     | √<br>(pH) |      |      |      |      |
| BH1B SS1    | 0.3 - 0.9       | 87.1 - 86.5   | Fill                  | 1        |     | √<br>(pH) |      |      |      |      |
| BH1B SS2    | 0.9 - 1.5       | 86.5 - 85.9   | Fill                  | 1        |     | √<br>(pH) |      |      |      |      |



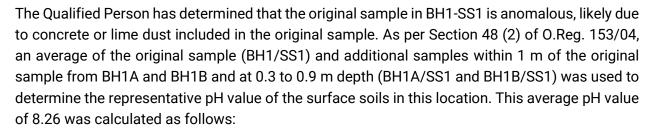


| Comple ID | Depth     |             | Chuete | APEC     | M/  | ORPs | PAHs | PHCs | втех | VOCs |
|-----------|-----------|-------------|--------|----------|-----|------|------|------|------|------|
| Sample ID | mbgs      | masl        | Strata | Assessed | H-M | *    | PARS | PHUS | DIEA | VOCS |
| BH2A SS1  | 0.6 - 1.2 | 87.1 - 86.5 | Fill   | 1        |     |      |      | ~    |      |      |
| BH2B SS1  | 0.6 - 1.2 | 87.1 - 86.5 | Fill   | 1        |     |      |      | ~    |      |      |
| BH2C SS1  | 0.6 - 1.2 | 87.1 - 86.5 | Fill   | 1        |     |      |      | ~    |      |      |

\*Soil samples were submitted for the following select ORPs, unless otherwise mentioned: Cyanide (CN-), Mercury (Hg), Hexavalent Chromium (Cr(VI)), low or high pH, Boron Hot-Water Soluble, EC, SAR

### 4.3.2 Location and Depth of Groundwater Samples

| Sample   |                          | Depth          |                                     |                  | Metals,<br>H-Metals, | PAHs         | PHCs/ | VOCs         |
|----------|--------------------------|----------------|-------------------------------------|------------------|----------------------|--------------|-------|--------------|
| ID       | Screen Strata Assessed N |                | Na &<br>*ORPs                       | РАП5             | BTEX                 | VOCS         |       |              |
| Grounded | Drilling Invest          | tigation (Nov  | vember 2022)                        |                  |                      |              |       |              |
| BH1      | 10.7 - 13.7              | 76.8 -<br>73.7 | Sand and Silt<br>Till/Sand          | Due<br>Diligence | √                    | √            | ✓     | ~            |
| BH2      | 9.1 - 12.2               | 78.6 -<br>75.5 | Sand and Silt<br>Till/Silty<br>Sand | Due<br>Diligence | ~                    | ~            | ~     | $\checkmark$ |
| BH3      | 12.2 - 15.2              | 76.3 -<br>73.2 | Sand                                | Due<br>Diligence | $\checkmark$         | $\checkmark$ | ✓     | ~            |


\*Groundwater samples were submitted for the following select ORPs: Cyanide (CN-), Mercury (Hg), Hexavalent Chromium (Cr(VI)), low or high pH, Chloride (CI)

### 4.3.3 Additional pH sampling in Soil

The drilling program conducted by Grounded collected a soil sample in BH1 between 0.2 to 0.8 m depth (BH1/SS1) that had an elevated pH level of 9.12 pH units. On December 16, 2022, Grounded advanced 2 additional boreholes (BH1A and BH1B) within 1 m laterally of BH1 to a maximum depth of 1.5 m below existing grade. Four samples (BH1A/SS1, BH1A/SS2, BH1B/SS1, BH1B/SS2) plus one duplicate were collected at depths of 0.3 to 0.9 mbgs (SS1) and 0.9 to 1.5 mbgs (SS2), respectively. The laboratory results indicated that all samples were within the applicable range of 7.00 to 9.00 pH units for surface soil, as indicated below.:

| Sample Name                  |                                                |                |     | BH1 SS1   | BH1A SS1    | DUP-2<br>(BH1A SS1)      | BH1B SS1    | BH1A SS2    | BH1B SS2    |             |
|------------------------------|------------------------------------------------|----------------|-----|-----------|-------------|--------------------------|-------------|-------------|-------------|-------------|
| Date                         |                                                | MECP           |     | 11-Nov-22 | 16-Dec-22   | ec-22 16-Dec-22 16-Dec-2 | 16-Dec-22   | 16-Dec-22   | 16-Dec-22   |             |
| Depth of<br>Sample (m)       | Units                                          | Table 2<br>RPI | RDL | 0.2 - 0.8 | 0.3 - 0.9   | 0.3 - 0.9                | 0.3 - 0.9   | 0.9 - 1.5   | 0.9 - 1.5   |             |
| Elev. of<br>Sample<br>(masl) |                                                |                |     |           | 87.3 - 86.7 | 87.1 - 86.5              | 87.1 - 86.5 | 87.1 - 86.5 | 86.5 - 85.9 | 86.5 - 85.9 |
| pН                           | unitless                                       | 5 to 9         | -   | 9.12      | 8.13        | 8.01                     | 8.1         | 8.07        | 8.04        |             |
| Average                      | Average Result of soils 0.2-0.9 mbgs<br>(SS1)* |                |     |           | 8.          | 26                       |             |             |             |             |

\*Results were averaged with the original sample and soil sample points taken within 1 metre of and same depth within the same soil horizon as the original exceedance.



- i. converting the pH value of the original samples and additional auger hole samples to their corresponding hydrogen ion (H+) concentrations
- ii. calculating the average H+ concentration, and
- iii. converting the average H+ concentration back to its corresponding pH value.

The QP has determined through additional sampling, that the elevated pH reading in BH1/SS1 was likely due to concrete and/or lime dust included in the sample. This average pH value of additional samples taken at this depth of 8.26 is within the applicable range of 7.00 to 9.00 pH units for surface soils and therefore, all surface soil at the Property is within the applicable range for pH.

### 4.4 Exemption of Exceedances (O.Reg. 153/04 Sec 49.1)

Chemical analysis of the soil indicates that there are exceedances of the MECP Table 2 RPI Standards for Electrical Conductivity and Sodium Adsorption Ratio (salt related compound) within the upper soils in BH2 and BH3.

The Property is bound by municipal roadways to the east (Dixie Road) and west (Kingston Road). The roadways have public sidewalks between the road and the Property boundary. The Property features construction vehicle traffic and car parking. The roadways, sidewalks, and parking area are all salted during the winter months for safety purposes.

The Qualified Person has determined, based on the Phase One Environmental Site Assessment and the Phase Two Environmental Site Assessment, that a substance (salt) has been applied to surfaces of the roadway, sidewalks, driveway, and parking area for the safety of vehicular and pedestrian traffic under conditions of snow or ice or both.

The applicable site condition standard is exceeded at the Property solely because of the reason as stated above (application of salt for safety purposes during winter months). As per O.Reg. 153/04 49.1 the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act.



### 4.5 Contaminants Associated with Each Area

No Contaminants of Concerns (CoCs) were associated with Areas of Potential Concerns (APECs) identified on the Property.

| APEC 1 | APEC 2 |
|--------|--------|
| None   | None   |

### 4.6 Medium in Which Contaminants are Associated

Fill, native soil and groundwater were investigated as part of the Phase Two ESA investigation. No CoCs were identified in the following media for the contaminants listed.

| Metals | H-Metals | ORPs | PAHs | PHCs | BTEX | VOCs |
|--------|----------|------|------|------|------|------|
| None   | None     | None | None | None | None | None |

### 4.7 Information Known about Each Contaminated Area

No contaminants were identified in the soil and groundwater on the Property. All the samples met the Table 2 RPI Standard as shown in Figures 6 to 9.

### 4.8 Distribution of Contaminant

No contaminants were identified on the Property. As such, there is migration associated with contaminants on the Property is unlikely.

### 4.9 Climatic or Meteorological Influences on Migration

No contaminants were identified on the Property. As such, climatic or meteorological influences on migration on the Property are unlikely.

### 4.10 Soil Vapour Intrusion into Buildings

No contaminants were identified in the soil and groundwater during the investigation. As such, the likelihood for soil vapour intrusion of contaminants into buildings is low.



A slab-on-grade commercial building was observed on the Property.

### 4.12 Building HVAC

Current/future HVAC systems present in any buildings on the Property will not affect the distribution and transport of contaminants because no volatile CoCs were identified.

### 4.13 Subsurface Structures and Utilities

The utility locates conducted as part of the Phase Two ESA observed subsurface utilities and services at the Property, as shown on Figure 4. It is possible that the bedding materials for the underground utilities could serve as preferential pathways for the migration of CoPCs. However, as the highest stabilized groundwater levels was observed at approximately 4.9 m below ground surface, it is unlikely that the utilities will intersect the groundwater table.

Additionally, no contaminants were identified in the soil and groundwater during the investigation.

# 5 Potential Exposures Pathways and Receptors

### 5.1 Description of All Components

A list of all risk-based components of potential exposure pathways and receptors are presented below and presented on Figures 10 and 11.

| Potential Pathway | Description                                                                                                                                                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GW1               | Groundwater for drinking water purposes                                                                                                                                      |
| GW2               | Groundwater for protection from movement to indoor air                                                                                                                       |
| GW3               | Groundwater for protection of aquatic life                                                                                                                                   |
| S1                | Soil for protection of a residential receptor from direct contact with surface soil                                                                                          |
| S2                | Soil for protection from direct soil contact for a lower frequency and intensity exposure than residential surface soil, such as commercial or industrial scenarios          |
| S3                | Soil for direct soil contact for a low-frequency, high-intensity, human health exposure scenario without children present that is protective of a worker digging in the soil |

| Potential Pathway         | Description                                                                                             |
|---------------------------|---------------------------------------------------------------------------------------------------------|
| S-IA                      | Soil for protection of movement to indoor air and human exposure                                        |
| S-OA                      | Soil for protection of movement to outdoor air and human exposure                                       |
| S-Odour                   | Soil for protection of movement to outdoor air and human exposure                                       |
| S-GW1                     | Soil for protection from movement to groundwater for drinking water purposes                            |
| S-GW3                     | Soil for protection from movement to groundwater and then to aquatic life                               |
| Plants and Soil Organisms | Soil for protection against adverse effects to plants and soil dwelling organisms                       |
| Mammals and Birds         | Soil for protection against adverse effects through direct soil and food ingestion to mammals and birds |

#### 5.2 **Receptor Human Health**

| Potential | Sources                                                                                                  | CoCs from<br>Phase Two<br>ESA | Potential Risks (Yes/No) |         |          |         |  |
|-----------|----------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|---------|----------|---------|--|
| Pathway   | Sources                                                                                                  |                               | Source                   | Pathway | Receptor | Risk    |  |
| GW1       | Groundwater not a media of<br>concern. However,<br>contamination not present in<br>groundwater assessed. | None                          | No                       | Yes     | Yes      | No Risk |  |
| GW2       | Groundwater not a media of<br>concern. However,<br>contamination not present in<br>groundwater assessed. | None                          | No                       | No      | Yes      | No Risk |  |
| GW3       | Groundwater not a media of<br>concern. However,<br>contamination not present in<br>groundwater assessed. | None                          | No                       | Yes     | Yes      | No Risk |  |
| S1        | Contamination not present in fill material and native soils                                              | None                          | No                       | Yes     | Yes      | No Risk |  |
| S2        | Contamination not present in fill material and native soils                                              | None                          | No                       | Yes     | Yes      | No Risk |  |
| S3        | Contamination not present in fill material and native soils                                              | None                          | No                       | Yes     | Yes      | No Risk |  |
| S-IA      | Contamination not present in fill material and native soils                                              | None                          | No                       | Yes     | Yes      | No Risk |  |



| Potential<br>Pathway | Sources                                                     | CoCs from<br>Phase Two<br>ESA | Potential Risks (Yes/No) |         |          |         |  |
|----------------------|-------------------------------------------------------------|-------------------------------|--------------------------|---------|----------|---------|--|
|                      | Sources                                                     |                               | Source                   | Pathway | Receptor | Risk    |  |
| S-OA                 | Contamination not present in fill material and native soils | None                          | No                       | Yes     | Yes      | No Risk |  |
| S-Odour              | Contamination not present in fill material and native soils | None                          | No                       | Yes     | Yes      | No Risk |  |
| S-GW1                | Contamination not present in fill material and native soils | None                          | No                       | Yes     | Yes      | No Risk |  |
| S-GW3                | Contamination not present in fill material and native soils | None                          | No                       | Yes     | Yes      | No Risk |  |

### 5.3 Receptor Terrestrial Environment

| Potential<br>Pathway            | Courses                                                     | CoCs from<br>Phase Two | Potential Risks (Yes/No) |         |          |         |  |
|---------------------------------|-------------------------------------------------------------|------------------------|--------------------------|---------|----------|---------|--|
|                                 | Sources                                                     | ESA                    | Source                   | Pathway | Receptor | Risk    |  |
| Plants and<br>Soil<br>Organisms | Contamination not present in fill material and native soils | None                   | No                       | Yes     | Yes      | No Risk |  |
| Mammals<br>and Birds            | Contamination not present in fill material and native soils | None                   | No                       | Yes     | Yes      | No Risk |  |

# 5.4 Receptor Aquatic Environment

| Potential<br>Pathway | Sources                                                                                                  | CoCs from<br>Phase Two<br>ESA | Potential Risks (Yes/No) |         |          |         |  |
|----------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|---------|----------|---------|--|
|                      | Sources                                                                                                  |                               | Source                   | Pathway | Receptor | Risk    |  |
| GW3                  | Groundwater not a media of<br>concern. However,<br>contamination not present in<br>groundwater assessed. | None                          | No                       | Yes     | Yes      | No Risk |  |
| S-GW3                | Contamination not present in fill material and native soils                                              | None                          | No                       | Yes     | Yes      | No Risk |  |

### 5.5 Summary of Potential Receptor Risks

No Contaminants of Concern were identified during the Phase Two ESA investigation. There is no potential risk associated with the Human Receptor, the Terrestrial or the Aquatic Environment.