

Geotechnical Investigation

Slope Stability Analysis and Geotechnical Setback Study
Part of Lots 3 and 4, Concession 5, City of Pickering, Ontario

Prepared For:

869547 Ontario Inc.

GeoPro Project No.: 17-1780GHE3 Revised

Report Date: September 2, 2025

Table of Contents

1.	INTI	RODUCTION	1
2.	GEC	TECHNICAL INVESTIGATION FOR PROPOSED RESIDENTIAL DEVELOPMENT BY GEOP	RO 2
3.	DISC	CUSSION AND RECOMMENDATIONS	2
	3.1	Existing Slope Conditions and Profile	2
	3.2	Erosion Setback	3
	3.3	Soil Parameters	4
	3.4	Stability Analysis of Existing Slope	4
	3.5	Long Term Stable Top of Slope considering Erosion Setback	6
	3.6	Other Comments	7
			_
4.	CLO	SURE	8
	CLO wing		× کا
Dra	wing		
Dra Slop Slop	wing be Pro be Sta	s ofiles Location Plan ability Analysis of Existing Slope, Cross-Section A-A	No.
Dra Slop Slop Slop	wing oe Pro oe Sta oe Sta	s ofiles Location Plan ability Analysis of Existing Slope, Cross-Section A-A ability Analysis of Existing Slope, Cross-Section B-B	No .
Dra Slop Slop Slop Slop	wing be Pro be Sta be Sta	s ofiles Location Plan ability Analysis of Existing Slope, Cross-Section A-A ability Analysis of Existing Slope, Cross-Section B-B ability Analysis of Existing Slope, Cross-Section C-C	No. 1 2 3 4
Dra Slor Slor Slor Slor Slor	wing pe Pro pe Sta pe Sta pe Sta	s ofiles Location Plan ability Analysis of Existing Slope, Cross-Section A-A ability Analysis of Existing Slope, Cross-Section B-B ability Analysis of Existing Slope, Cross-Section C-C ability Analysis of Existing Slope, Cross-Section D-D	No. 1 2 3 4
Dra Slor Slor Slor Slor Slor Slor	wing be Pro be Sta be Sta be Sta be Sta	s ofiles Location Plan ability Analysis of Existing Slope, Cross-Section A-A ability Analysis of Existing Slope, Cross-Section B-B ability Analysis of Existing Slope, Cross-Section C-C ability Analysis of Existing Slope, Cross-Section D-D ability Analysis of Existing Slope, Cross-Section E-E	No. 1 2 3 4
Dra Slop Slop Slop Slop Slop Slop	wing oe Pro oe Sta oe Sta oe Sta oe Sta oe Sta	s ofiles Location Plan ability Analysis of Existing Slope, Cross-Section A-A ability Analysis of Existing Slope, Cross-Section B-B ability Analysis of Existing Slope, Cross-Section C-C ability Analysis of Existing Slope, Cross-Section D-D ability Analysis of Existing Slope, Cross-Section E-E ability Analysis of Existing Slope, Cross-Section F-F	No. 1 2 3 4 5 6 7
Dra Slop Slop Slop Slop Slop Slop Slop	wing be Prope State be State be State be State be State	ofiles Location Plan ability Analysis of Existing Slope, Cross-Section A-A ability Analysis of Existing Slope, Cross-Section B-B ability Analysis of Existing Slope, Cross-Section C-C ability Analysis of Existing Slope, Cross-Section D-D ability Analysis of Existing Slope, Cross-Section E-E ability Analysis of Existing Slope, Cross-Section F-F ability Analysis of Long-Term Stable of Slope, Cross-Section A-A	No. 11 22 33 44 55 66 77
Dra Slop Slop Slop Slop Slop Slop Slop Slop	wing oe Pro oe Sta	sofiles Location Plan Subility Analysis of Existing Slope, Cross-Section A-A Subility Analysis of Existing Slope, Cross-Section B-B Subility Analysis of Existing Slope, Cross-Section C-C Subility Analysis of Existing Slope, Cross-Section D-D Subility Analysis of Existing Slope, Cross-Section E-E Subility Analysis of Existing Slope, Cross-Section F-F Subility Analysis of Long-Term Stable of Slope, Cross-Section B-B	No. 11 22 33 44 55 66 77 88
Dra Slop Slop Slop Slop Slop Slop Slop Slop	wing pe Pro pe Sta	ofiles Location Plan ability Analysis of Existing Slope, Cross-Section A-A ability Analysis of Existing Slope, Cross-Section B-B ability Analysis of Existing Slope, Cross-Section C-C ability Analysis of Existing Slope, Cross-Section D-D ability Analysis of Existing Slope, Cross-Section E-E ability Analysis of Existing Slope, Cross-Section F-F ability Analysis of Existing Slope, Cross-Section A-A ability Analysis of Long-Term Stable of Slope, Cross-Section B-B ability Analysis of Long-Term Stable of Slope, Cross-Section C-C	No. 11 22 33 44 55 66 77
Dra Slop Slop Slop Slop Slop Slop Slop Slop	wing oe Pro oe Sta	sofiles Location Plan Subility Analysis of Existing Slope, Cross-Section A-A Subility Analysis of Existing Slope, Cross-Section B-B Subility Analysis of Existing Slope, Cross-Section C-C Subility Analysis of Existing Slope, Cross-Section D-D Subility Analysis of Existing Slope, Cross-Section E-E Subility Analysis of Existing Slope, Cross-Section F-F Subility Analysis of Long-Term Stable of Slope, Cross-Section B-B	No. 1 2 3 4 5 6 6 7 8 9 10

Appendix A

Borehole Location Plan and Borehole Logs of Previous Geotechnical Investigation Carried Out by GeoPro

i

Limitations to the Report

1. INTRODUCTION

GeoPro Consulting Limited (GeoPro) was retained by 869547 Ontario Inc.(the Client) to conduct a slope stability analysis and a geotechnical setback study for the slopes located at Part of Lots 3 and 4, Concession 5, in the City of Pickering, Regional Municipality of Durham, Ontario.

The purpose of this geotechnical investigation was to obtain information on the existing subsurface conditions by means of a limited number of boreholes, in-situ tests and laboratory tests of soil samples to provide required geotechnical design information. Based on GeoPro's interpretation of the data obtained, geotechnical comments and recommendations related to the project designs are provided.

The report is prepared with the condition that the design will be in accordance with all applicable standards and codes, regulations of authorities having jurisdiction, and good engineering practice. Further, the recommendations and opinions in this report are applicable only to the proposed project as described above. On-going liaison and communication with GeoPro during the design stage and construction phase of the project is strongly recommended to confirm that the recommendations in this report are applicable and/or correctly interpreted and implemented. Also, any queries concerning the geotechnical aspects of the proposed project shall be directed to GeoPro for further elaboration and/or clarification.

This report is provided on the basis of the terms of reference presented in our approved proposal and our understanding of the project. If there are any changes in the design features relevant to the geotechnical analyses, or if any questions arise concerning the geotechnical aspects of the codes and standards, this office should be contacted to review the design. It may then be necessary to carry out additional borings and reporting before the recommendations of this report can be relied upon.

This report deals with geotechnical issues only. The geo-environmental (chemical) aspects of the subsurface conditions, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources, were not investigated and were beyond the scope of this assignment.

The site investigation and recommendations follow generally accepted practice for geotechnical consultants in Ontario. Laboratory testing for most part follows ASTM or CSA Standards or modifications of these standards that have become standard practice in Ontario.

This report has been prepared for the Client only. Third party use of this report without GeoPro's consent is prohibited. The limitations to the report presented in this report form an integral part of the report and they must be considered in conjunction with this report.

2. GEOTECHNICAL INVESTIGATION FOR PROPOSED RESIDENTIAL DEVELOPMENT BY GEOPRO

Geotechnical investigations and supplementary geotechnical investigations were carried out for the proposed residential development at the site in 2017 and 2021. The geotechnical reports entitled "Geotechnical Investigation – Proposed Residential Development" dated May 31, 2017 and "Supplementary Geotechnical Investigation – Proposed Residential Development" dated December 5, 2022 were submitted to the Client. The borehole location plan and borehole logs of the geotechnical investigation and supplementary geotechnical investigation for the proposed residential development carried out by GeoPro were attached in Appendix A.

3. DISCUSSION AND RECOMMENDATIONS

This section of the report provides a slope stability assessment for the subject slope based on our interpretation of subsurface data from a limited number of boreholes, slope profiles obtained, our field observations and our understanding of the project requirements. The information in this portion of the report is provided for the guidance of the design engineers and professionals. The results of the slope stability assessment are subject to the review and approval of the relevant agencies.

Based on the borehole information, our visual slope inspection and slope profiles interpreted from the contour lines of the provided topographic drawings, a detailed slope stability study was carried out to evaluate the long-term global stability of the existing slope as well as the setback requirement. The assessment of the stability of the subject slope consisted of two components:

- 1. Visual field review of the current slope conditions from a slope stability perspective; and
- 2. Global stability analyses based on the subsurface conditions encountered in the boreholes carried out during the geotechnical investigation.

3.1 Existing Slope Conditions and Profile

The following section provides geotechnical comments related to the measured slope geometry based on the topographic plan provided by the Client, as well as observations made during a visual inspection of the existing slopes carried out by our geotechnical staff on April 10, 2017. Six (6) typical slope profiles (Sections A-A to F-F) were provided for the global stability analyses (See Drawing 1 for the locations).

Based on our site observations and the slope profiles measured, the slope conditions at the site are described as follows:

The subject slopes are situated on both sides of the Carruthers Creek. Within the study area, the inclinations of the slopes generally range from about 1.7 horizontal to 1 vertical (1.7H:1V) to 5.6 horizontal to 1 vertical (5.6 H:1V) with localized steeper or flatter areas; the heights of the slope are generally about 5.0 m to 7.0 m;

- 2. The slope surface are generally covered by trees or bushes with decayed leaves/branches;
- 3. No water seepage was noted at the slope surface within the study area;
- 4. Obvious erosion caused by surface runoff was not noted at the time of the investigation. Minor active erosion of the slope toe was observed at a portion of the existing slopes during the site visit;
- 5. Indications of shallow slumping/sloughing at or near-surface slope were not observed along the slope during our field review;
- 6. Tension cracks and/or other indicators of deep seated movement of the slope were not observed at or beyond the crest of the slope.
- 7. Vegetation in the subject site was observed to be uniform and no previous soil disturbance was noted at the time of site visit.

3.2 Erosion Setback

The magnitude of the erosion component is typically the estimated recession of the slope toe due to erosion over a specified design period, and is measured as a horizontal distance from the existing creek channel. The toe erosion component is to be assessed using suggested guidelines for toe erosion allowances contained in "Technical Guide for River & Stream Systems: Erosion Hazard Limit (2002)" prepared by the Ontario Ministry of Natural Resources. A fluvial study entitled "Frisque Lands Geomorphic Assessment 3225 5th Concession Road (Part of Lots 3 and 4), City of Pickering Carruthers Creek Watershed" prepared by Beacon Environmental Limited dated October 2023, was provided to GeoPro to be considered in the analysis of the erosion allowance.

For the slope Cross-Section B-B, a toe erosion component is typically not required for these sections where the valley floor is greater than 15 m from the toe of the slope.

For the slope Cross-Sections A-A, C-C, D-D, E-E and F-F, an erosion setback is required due to the presence of existing water course. Based on the soil conditions in the boreholes and the site observations, the soils at the slope toe generally consisted of fine sandy/silty soils at Cross-Sections A-A and F-F, clayey silt at Cross-Sections C-C, and D-D, and gravelly sand at Cross-Section E-E. Obvious evidence of active erosion of the slope toe was observed at a portion of the slope toe during the site visit. In accordance with "Technical Guide for River & Stream Systems: Erosion Hazard Limit (2002)", the design erosion setback allowance of 8.0 m is considered applicable for the exposed soils at Cross-Sections A-A, C-C, and F-F, the design erosion setback allowance of 5.0 m is considered applicable for the exposed soils at Cross-Section D-D, and the design erosion setback allowance of 7.0 m is considered applicable for the exposed soils at Cross-Section E-E. The erosion allowance of e = 8.0 m will be used to establish the long-term stable top of slope at Cross-Sections A-A, C-C, and F-F; whereas the erosion allowance of e = 5.0 m will be used to

establish the long-term stable top of slope at Cross-Section D-D and an erosion allowance of e = 7.0 m will be used to establish the long-term stable top of slope at Cross Section E-E.

3.3 Soil Parameters

Soil strength parameters selected for the soil strata have been estimated based on the boreholes drilled near the slope, previously published information and from our experience on similar projects. A global slope stability analysis was carried out for the soil stratigraphy using effective stress/strength parameters as shown in the following Table:

Material Parameters for Slope Stability Analysis

Material Type	Unit Weight (kN/m³)	Effective Friction Angle Φ'	Cohesion (kPa)
Surficial Vegetation	16	28°	1
Loose (Probable) Fill Materials	18	28°	0
Very Loose Silty Fine Sand	18	28°	0
Loose to Compact Silty (Fine) Sand	20	31°	0
Compact to Dense Silt and Fine Sandy Silt	20	30°	0
Compact to Very Dense Fine Sand and Silt to Fine Sandy Silt	20	31°	0
Dense Fine Sand and Silt to Silty Fine Sand	21	31°	0
Stiff to Hard Clayey Silt and Clayey Silt (Till Like)	19	30°	1
Hard Clayey Silt Till to Silty Clay Till	20	31°	2
Dense to Very Dense Sandy Silt Till to Sand and Silt Till	21	31°	1
Very Dense Silty Sand	21	32°	0
Very Dense Gravelly Sand	22	33°	0

3.4 Stability Analysis of Existing Slope

The "Technical Guide, River & Stream Systems: Erosion Hazard Limit" document published by the Ontario Ministry of Natural Resources in 2002 ("The Guide"), provides recommendations for minimum Factors of Safety (FOS) for the design of stable slopes on the basis of land-use above or below the slopes. A Design Minimum Factor of Safety of 1.30 to 1.50 is recommended in Table 4.3 of the Guide (Section 4.3.3.1 Design Minimum Factors of Safety) for Active Land Uses, such as

those containing residential structures. A Factor of Safety greater than 1.5 should be used in consideration of the proposed residential development. Based on our previous experience, Factor of Safety of 1.5 is usually required by conservative authorities.

Long-term stability analysis of the existing slope at above noted section was carried out with the computer program SLIDE (Version 6.0) using the Simplified Bishop method. The analysis results for the existing slopes are presented in Drawings 2 to 7 and are summarized in the following table:

Long-term Stability Analysis Result of the Existing Slope

Slope Location/Drawing Number	Existing Slope Inclination	Existing Slope Height (m)	Calculated Factor of Safety	Note
Existing Slope, Cross-Section A-A / Drawing 2	2.00 H : 1V	6.0	1.03	Not Stable (FS<1.5)
Existing Slope, Cross-Section B-B / Drawing 3	2.21 H : 1V	6.0	1.10	Not Stable (FS<1.5)
Existing Slope Cross-Section C-C / Drawing 4	3.10 H : 1V	7.0	1.51	Stable (FS>1.5)
Existing Slope Cross-Section D-D / Drawing 5	3.29 H : 1V	6.0	1.37	Not Stable (FS<1.5)
Existing Slope Cross-Section E-E / Drawing 6	1.65 H : 1V	7.0	0.93	Not Stable (FS<1.5)
Existing Slope Section F-F / Drawing 7	5.57 H : 1V	5.0	2.33	Stable (FS>1.5)

The calculated FOS of the existing slope at Cross- Sections A-A to E-E ranged from 0.93 to 2.33, as shown on Drawings 2 to 7. The FOS of Cross-Sections C-C and F-F are greater than the minimum acceptable value of 1.5. The existing slope at Cross-Sections C-C and F-F are considered stable in terms of long term stability based on the requirements. However, the FOS of Cross-Sections A-A, B-B, D-D and E-E are less than the minimum acceptable value of 1.5. The existing slope at Cross-Sections A-A, B-B, D-D and E-E are considered not stable in terms of long term stability based on requirements.

3.5 Long Term Stable Top of Slope considering Erosion Setback

The long-term stable top of slope does not include a development/access setback component or a rear-yard allowance. The requirement for these additional setbacks, if any, are typically set by the Town/City, District or Provincial regulations and should be determined through consultation with the applicable regulatory bodies/agencies. Similarly, the setback required for safety against flood conditions or preservation of vegetation or wildlife is independent of the geotechnical setback criteria proposed.

Based on the analysis results, the points/line representing the long-term stable slope crest including the erosion setback at Cross-Section A-A' to F-F' is presented in Drawing 8 to 13 and summarized in the table below. A target minimum factor of safety of 1.5 was used to explore the slope failure surface.

Slope Location/Drawing Number	Long Term Stable Slope Inclination	Erosion Setback, e (m)	Calculated Factor of Safety	Distance from the existing top of the slope (m)	Note
Long Term Stable Top of Slope, Cross-Section A-A' / Drawing 8	4.17 H : 1V	8.0	1.52	20.98	Stable
Long Term Stable Top of Slope, Cross-Section B-B' / Drawing 9	3.17 H : 1V	0.0	1.54	5.75	Stable
Long Term Stable Top of Slope, Cross-Section C-C' / Drawing 10	3.10 H : 1V	8.0	1.55	8.0	Stable
Long Term Stable Top of Slope, Cross-Section D-D' / Drawing 11	3.70 H : 1V	5.0	1.57	9.0	Stable

office@geoproconsulting.ca

Long Term Stable Top of Slope, Cross-Section E-E' / Drawing 12	3.95 H : 1V	7.0	1.64	21.45	Stable
Long Term Stable Top of Slope, Cross-Section F-F' / Drawing 13	3.97 H : 1V	8.0	1.72	0*	Stable

Note: *Stays at the existing crest of the slope.

Based on the long-term stable top of slope at Cross-Sections A-A to F-F, the topographic survey plan and our visual slope inspection, the recommended long-term stable top of slope line is plotted on the Drawing 1. This long-term stable top of slope line must be reviewed by the Conservation Authority for the approval.

3.6 Other Comments

Additional comments related to the slope stability at the site are as follows:

- In order to prevent soil erosion at the slope surface, the vegetation on the existing slopes must be preserved.
- Surface water should be directed away from the slope surface using measures such as swale behind the crest of the slope, should any erosion be caused by surface runoff.
- Soils or other materials must not be placed on the existing slope surfaces or near the top
 of the slopes.

Any foundations near the slope should be founded below an imaginary 3H:1V line drawn up from the toe of the long term stable slope. Should this requirement be not meet, a geotechnical engineer from GeoPro should be consulted for further evaluation.

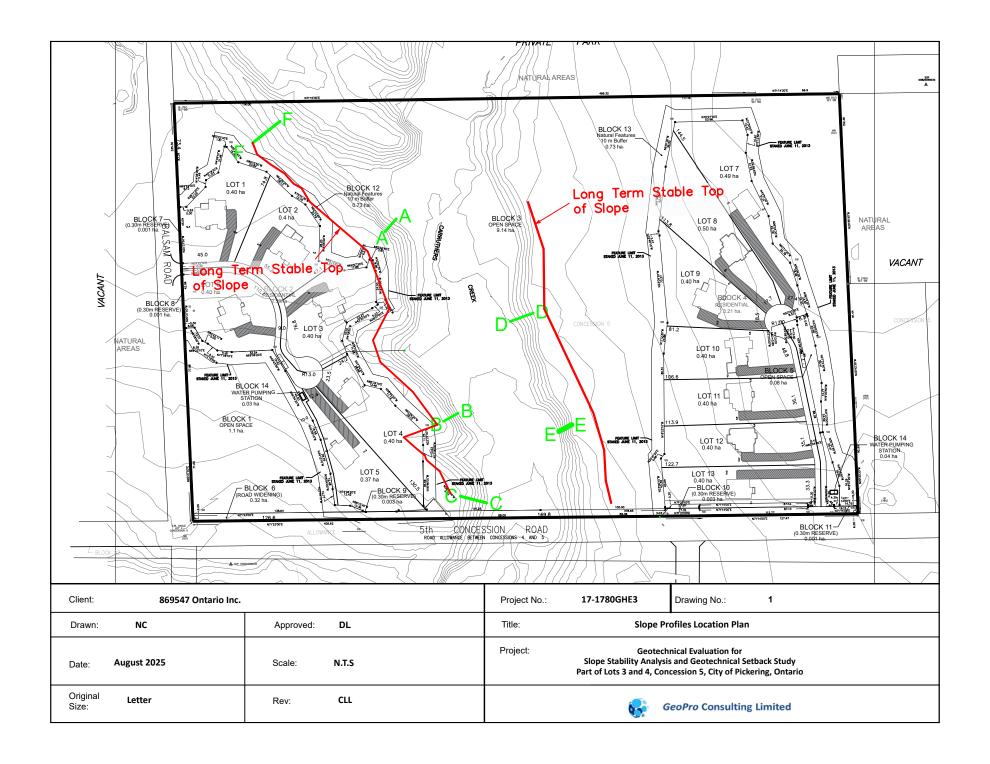
office@geoproconsulting.ca

4. CLOSURE

We trust that the geotechnical information presented in the report is sufficient for your present requirements. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact this office.

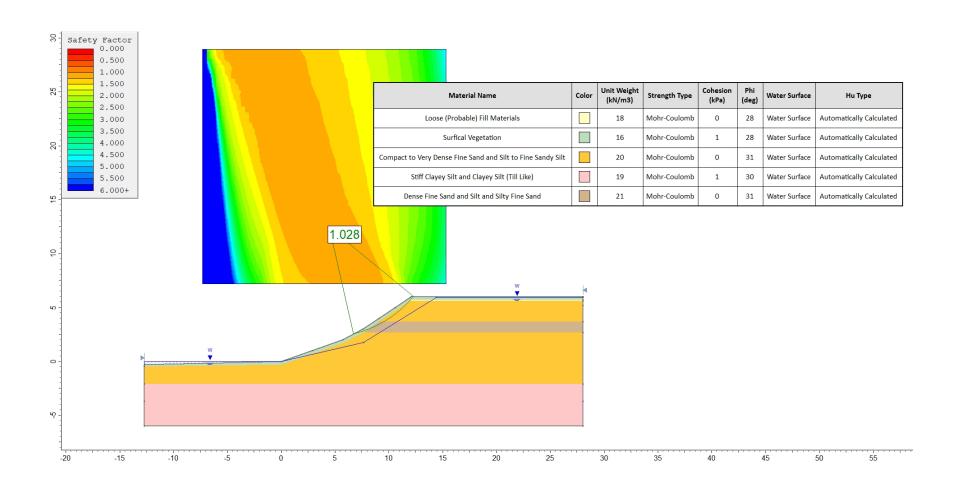
Yours very truly,

GEOPRO CONSULTING LIMITED

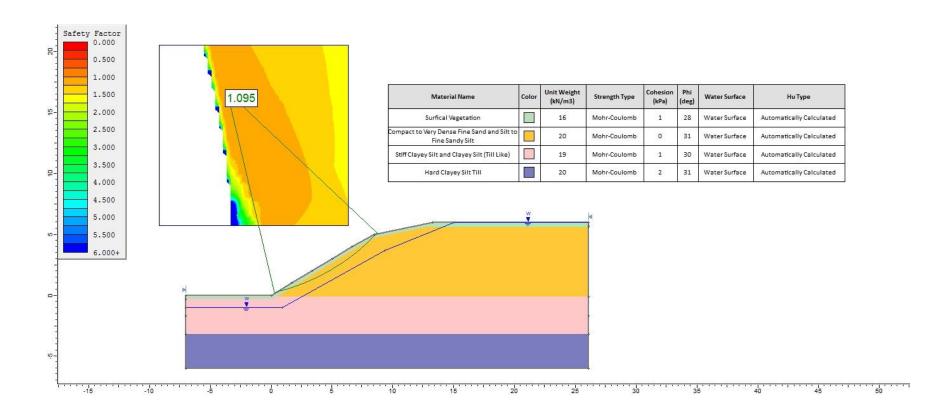

Niko C. Carrasco Geotechnical Group

Christian L. Llarena, Geotechnical Specialist Geotechnical Group

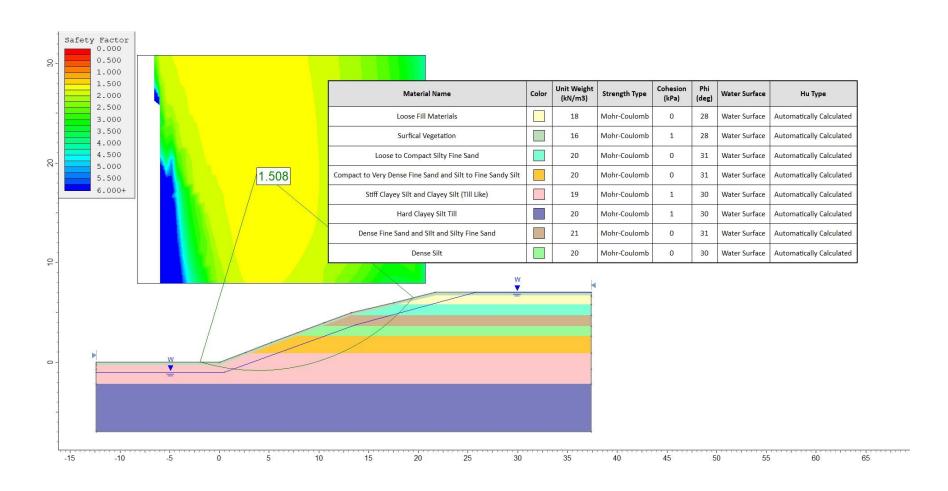
David B. Liu, P.Eng., Principal



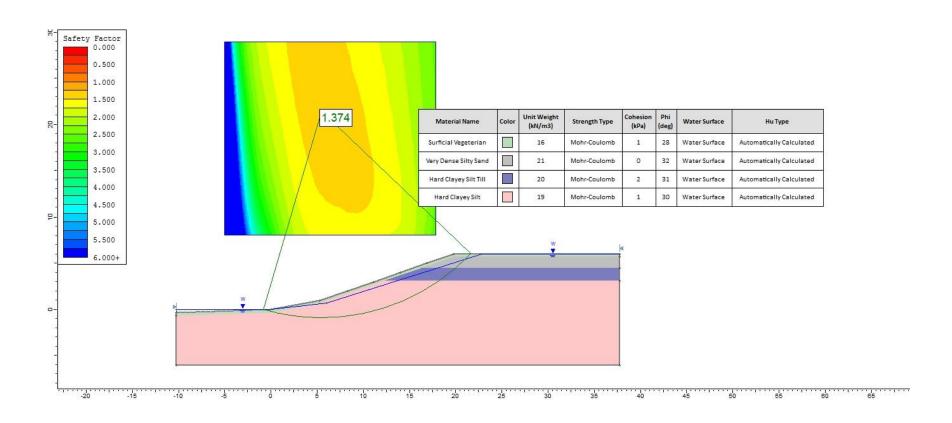
DRAWINGS



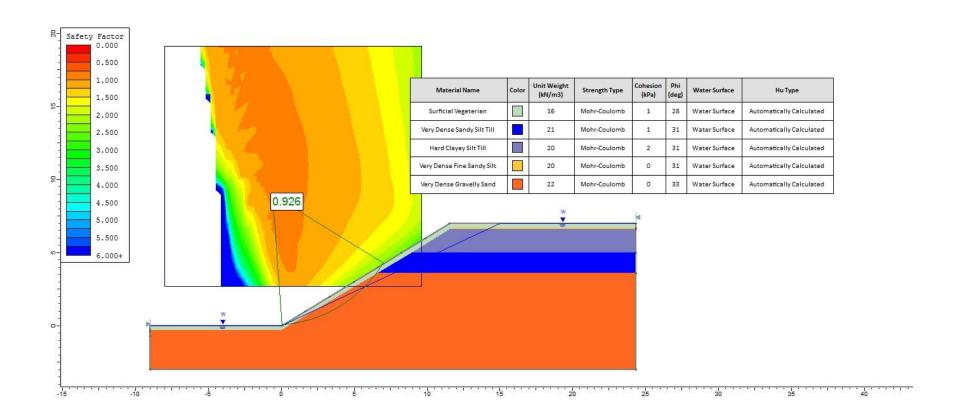
Slope Stability Analysis of Existing Slope, Cross-Section A-A



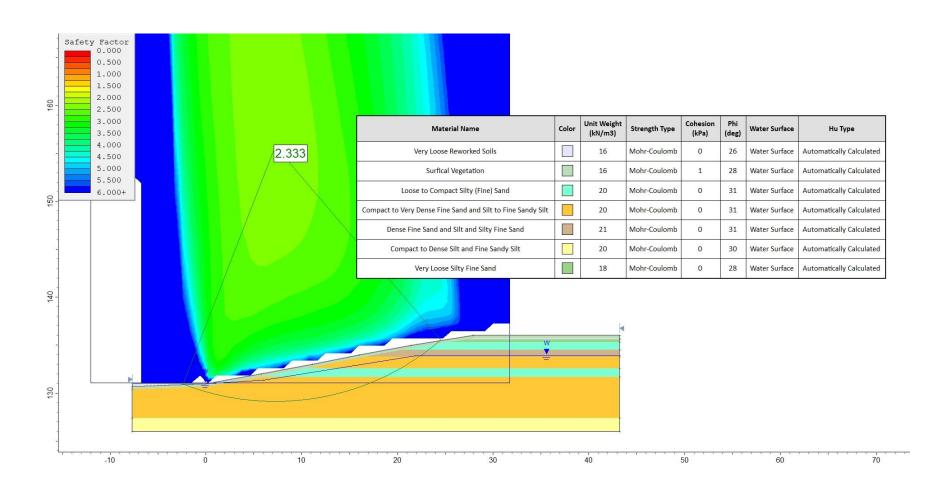
Slope Stability Analysis of Existing Slope, Cross-Section B-B



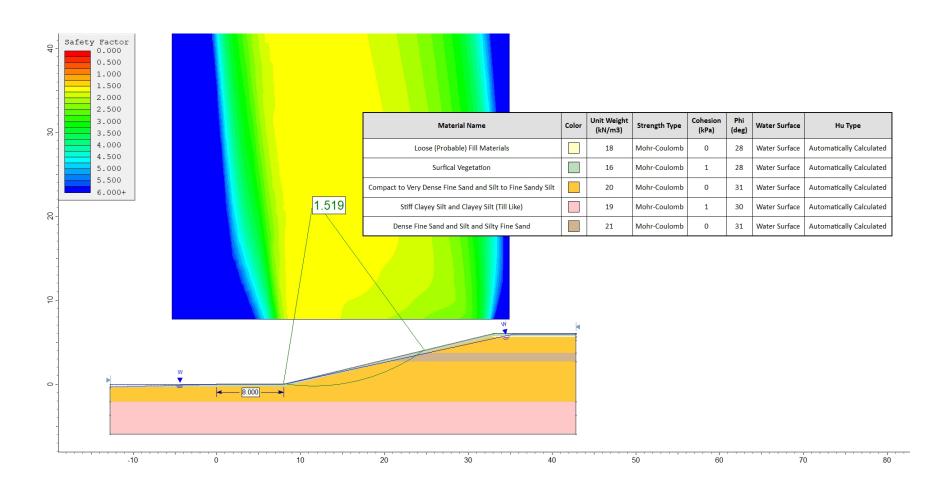
Slope Stability Analysis of Existing Slope, Cross-Section C-C



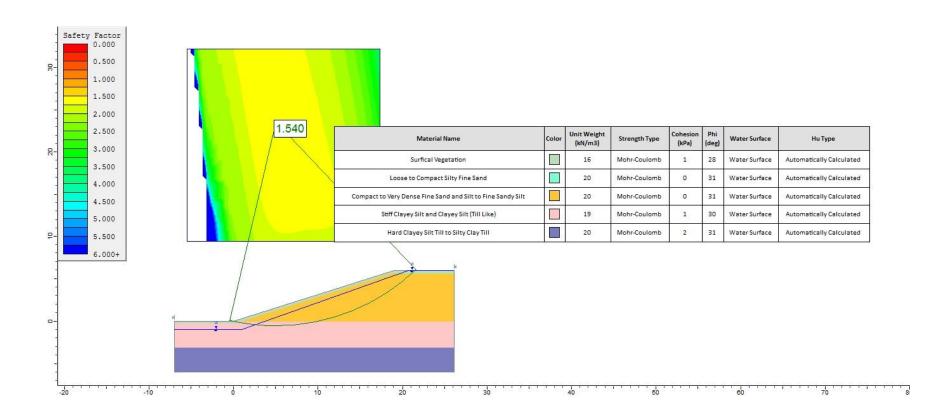
Slope Stability Analysis of Existing Slope, Cross-Section D-D


Slope Stability Analysis of Existing Slope, Cross-Section E-E

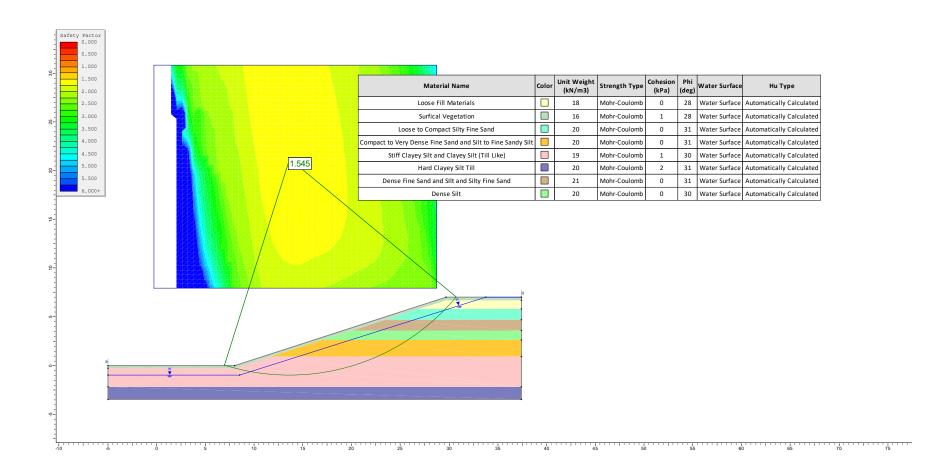
Tel: 905-237-8336 Fax: 905-248-3699


Slope Stability Analysis of Existing Slope, Cross-Section F-F

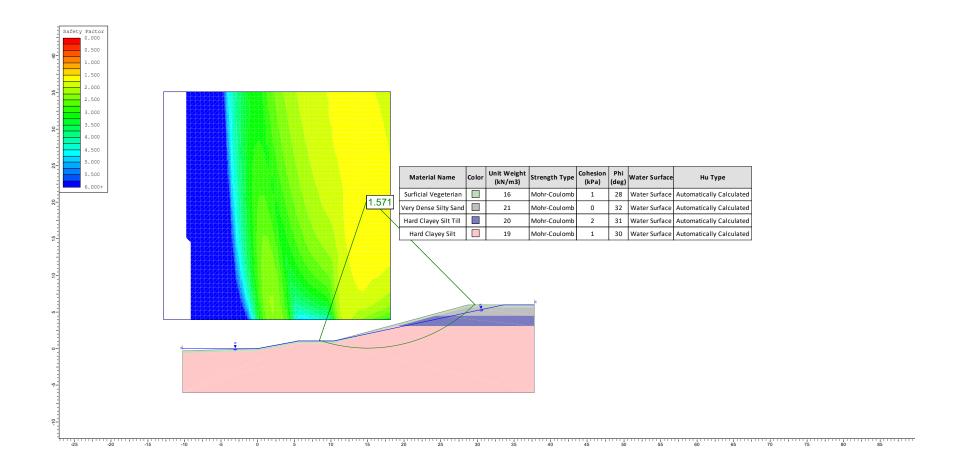
Tel: 905-237-8336 Fax: 905-248-3699



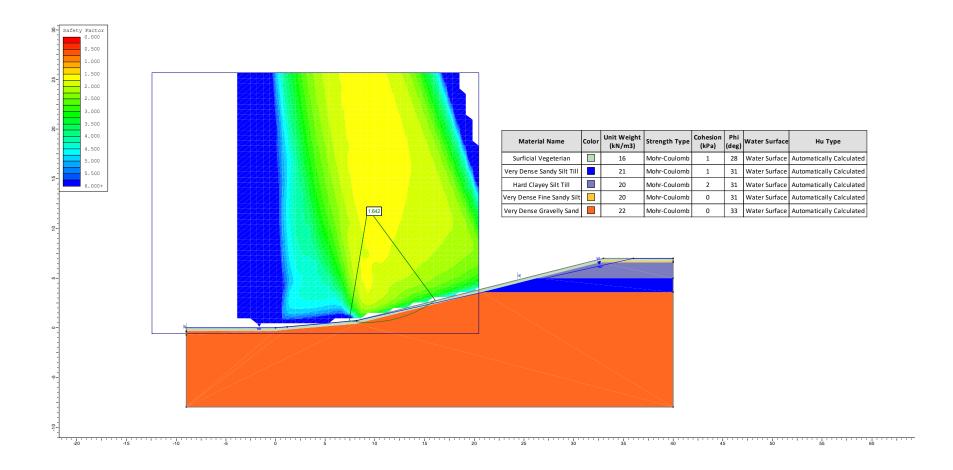
Slope Stability Analysis of Long-Term Stable of Slope, Cross-Section A-A



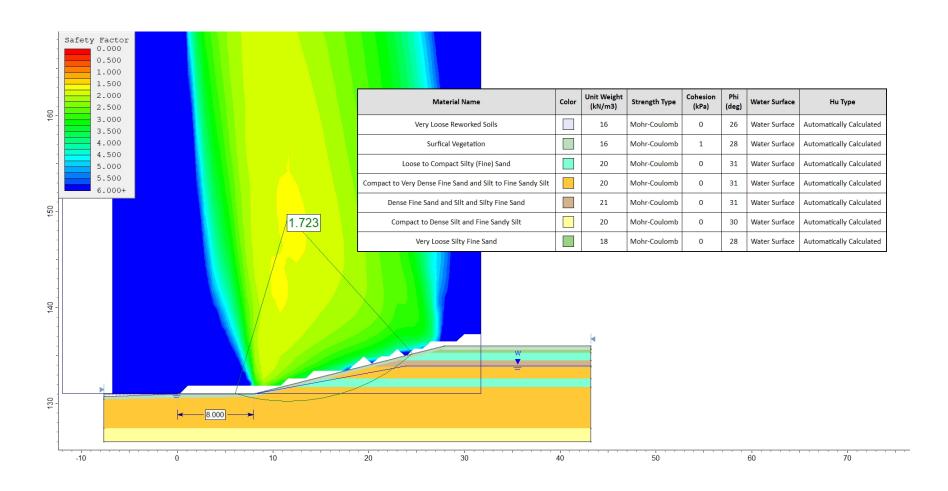
Slope Stability Analysis of Long-Term Stable of Slope, Cross-Section B-B



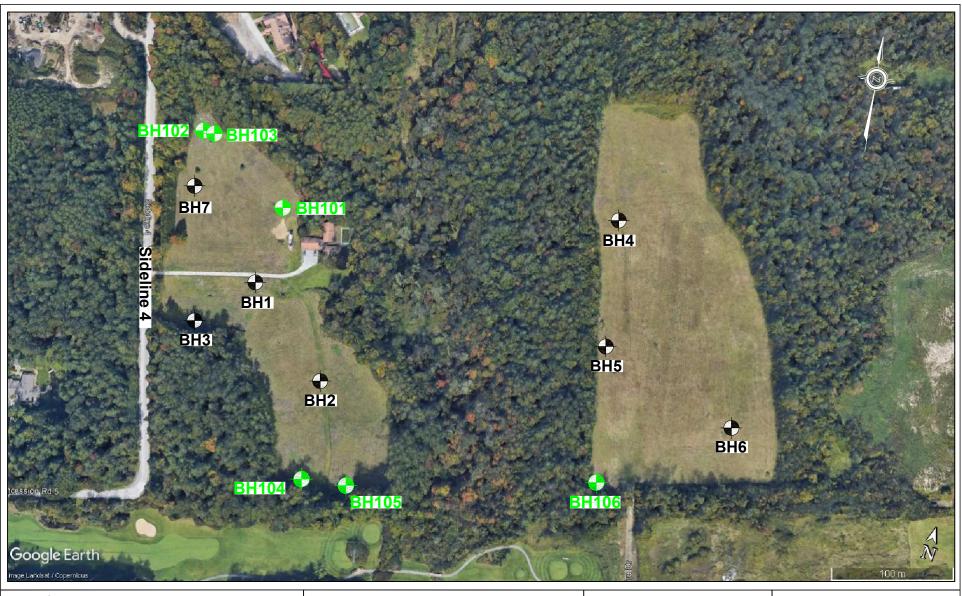
Slope Stability Analysis of Long-Term Stable of Slope, Cross-Section C-C


Slope Stability Analysis of Long-Term Stable of Slope, Cross-Section D-D

Tel: 905-237-8336 Fax: 905-248-3699



Slope Stability Analysis of Long-Term Stable of Slope, Cross-Section E-E



Slope Stability Analysis of Long-Term Stable of Slope, Cross-Section F-F

APPENDIX A

Borehole Location

Previous Borehole Location

Client:	869547	Ontario Inc.		Project No.:	17-1780GHE3	Drawing No.: 1
Drawn:	RF	Approved:	DL	Title:	Вс	orehole Location Plan
Date:	Nov. 2022	Scale:	N.T.S	Project:	Propose	echnical Investigation for d Residential Development ots 3 and 4, Pickering, Ontario
Original Size:	Letter	Rev:	DX		Geo	oPro Consulting Limited

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Continuous Flight Auger- Auto Hammer

Diameter: 155/205 mm REF. NO.: 17-1780GHE

Date: Apr/10/2017 ENCL NO.: 2

BH LO	CATION: See Borehole Location Plan					1			MIC CC	NE DE	NETD/	MOITA		1						
	SOIL PROFILE		S	AMPL	.ES	e.		RESIS	TANCE	NE PE PLOT	\geq	-		PLAST	IC NAT	URAL	LIQUID		WT	REMARKS
(m)		107			ଥ୍ୟ	GROUND WATER CONDITIONS	z				1		100	LIMIT W _P	CON	NTENT W	LIMIT W _L	ET PEN (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	3ER		BLOWS 0.3 m	OND	ELEVATION		NCONF	RENG INED	1H (K +	FIELD & Sens	VANE	 		0		(Cu)	TURAI (KN)	DISTRIBUTION (%)
125.0		STRA	NUMBER	TYPE	ž	SROU	EV.			RIAXIAI 10 (_ X	LAB \	VANE 100	1	TER Co		IT (%) 30	-	¥	GR SA SI CL
135.3 - 13 9.0	TOPSOIL: (180 mm)	<u>11/2</u>	<u> </u>		-			 				Ť				Ĩ	Ť			GR SA SI CL
0.2	REWORKED SILTY FINE SAND: trace organics, trace rootlets, brown, moist, loose	\bigotimes	1	SS	4	× ×	135													
134.2 1.1	SILTY FINE SAND: trace organics,	\bigotimes	2	SS	4			-								0				
- - -	trace rootlets, brown, wet, loose to compact					▼	134 W. L. May 0	133.9	 m 7											
133.2	FINE CAMP AND OUT TO FINE		3	SS	23	-	W. L. Apr 28									0				
2.1	FINE SAND AND SILT TO FINE SANDY SILT: trace clay, brown to grey, wet, dense to very dense		4	SS	37		133 -Bento								0					
- 3 -							400													
- - -			5	SS	55		132													
4							131													
-	grey		6	SS	82											3				
<u>5</u>					02		130													
-							Sand	-												
<u>6</u> - -			7	SS	50 / 150		Scree 129	ţ.							0					
-					mm															
<u>7</u> - -							Natur	t - al Pac	 											
127.4			8	SS	50 / 150			us							0					
7.9	END OF BOREHOLE	1111			\mm															
	Notes: 1) Water encountered at a depth of 1.5 m below ground surface (mBGS) during drilling. 2) Water was at a depth of 3.0 mBGS upon completion of drilling. 3) Borehole caved at a depth of 3.0 mBGS upon completion of drilling. 4) 51 mm dia. Monitoring Well was installed in borehole upon completion of drilling.																			
	Water Level Reading Date W.L. Depth (mBGS) April 28, 2017 1.72 May 9, 2017 1.35																			
	DWATER ELEVATIONS					GRAPH	, 3	3	Numbe	rs refer		- 8=3º	%	at Failu						

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Continuous Flight Auger- Auto Hammer

Diameter: 155/205 mm REF. NO.: 17-1780GHE

Date: Apr/10/2017 ENCL NO.: 3

BH LOCATION: See Borehole Location Plan

BH LC	SOIL PROFILE			AMPL	EC			DYNAI	MIC CC	NE PEI	NETR	ATION		Т						
	SOIL FROFILE			AIVIFL		H						_	100	PLAST	IC NAT MOIS CON	URAL STURE	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	TWT	REMARKS AND
(m)		LO T			<u>ا</u> ا	GROUND WATER CONDITIONS	z		Ĺ	Ĺ	50 		100	W _P		ITENT W	WL	ET PE (kPa)	L UNI	GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	ËE		BLOWS 0.3 m	ONI	ELEVATION		NCONF	RENG INED) חוי +	FIELD & Sen:	VANE	-		o	—	(CU)	TURA (KN	DISTRIBUTION (%)
		TRA	NUMBER	TYPE	<u> </u>	ROL	LEV/			RIAXIAL	. ×	: LAB	VANE		TER CO			ш.	₹	
133.0	TOPSOIL: (250 mm)	.711 ^N .	Z	Ĺ	-	0 0	_	-	10 4	10 6	0	80	100		10 2	20	30			GR SA SI CL
132:7	REWORKED SILTY FINE SAND:	XX	1	SS	5	3 3	-Concr	ete [0					
132.3	trace clay, trace organics, trace	\boxtimes						-												
0.7	rootlets, brown, moist, loose NO RECOVERY: likely silty fine	XX	\vdash			¥	W. L.													
1	sand, loose		2	NR	6	abla	May 0													
131.6							VV. L. Apr 28	131.9 i 5, 2017												
1.4	FINE SAND AND SILT: trace clay, trace organics, seams of clayey silt,		\vdash			13 13	•	F												
-	brown to grey, wet, compact to very		3	SS	18			-								0				
-	dense		\vdash				131													
Ė l	grey		\vdash			∤ : ∃:		-												
-	g. 3,		4	SS	30	l:	-Sand								0					
Ē.			\vdash				-Scree	ŀ n												
3			\vdash			1. H.I	00,00	: 												
E			5	SS	32	: 		-							0					
F			┢					E												
[129	_												
<u> </u>			1				129	-												
F 1								Ė												
E								-												
-			6	SS	46		128	_							0					
							120	-												
			1					Ē												
			ļ l					-												
6			1				127													
F I			\vdash					Ė												
Ė l			7	SS	53			-							0					
-			┢																	
125.9			ł				126							-						
7.1	CLAYEY SILT: some fine sand,	1						-												
Ē l	seams of sand, grey, wet, stiff		1					-												
F		111	1		.			-												
8			8	SS	10		125							-	0					
Ė l						800	-Natur	al Pacl	(
124.3			1					-												
8.6	CLAYEY SILT (TILL LIKE): trace to	1						ŀ												
9	some sand, trace gravel, containing cobbles and boulders, grey, wet, stiff		1				124													
E	,							-												
<u> </u>			9	SS	10			F						1						
F			I^-					Ė												
122.8							123	-						+						
10.1	CLAYEY SILT TILL TO SILTY	M	1					Ė						1						
F	CLAY TILL: trace sand, trace gravel, containing cobbles and	nd	1					ļ:												
	boulders, grey, moist, hard				60			Ē						1						
<u>11</u>		HH.	10	SS	80		122	-						1	0					
<u> </u>		[k]						E						1						
F		ИÜ						Ė												
<u> </u>			1					ŀ						1						
12	Continued Next Page	шИ				GRAPH	<u> </u>	-		rs refer	_	○ 8 =3'		_	_	_		!		

GROUNDWATER ELEVATIONS

GRAPH NOTES

DRILLING DATA

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

Method: Continuous Flight Auger- Auto Hammer

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

Diameter: 155/205 mm REF. NO.: 17-1780GHE

DATUM: Geodetic

Date: Apr/10/2017 ENCL NO.: 3

	IM: Geodetic							Date.	Api/ i	0/2017	'					Er	NCL N	J 3			
BHLO	OCATION: See Borehole Location Plan		_	SAMPLES DYNAMIC CONE PENETRATION RESISTANCE PLOT																	
<u> </u>	SOIL PROFILE		\vdash	AMPL	.ES	e.		RESIS	TANCE	PLOT	\geq			PLASTI	IC NATU MOIS CON	JRAL	LIQUID		™	REMA	
(m)		1			(0)	GROUND WATER CONDITIONS		2	0 4	0 6	8 0	30 1	00	LIMIT W _P	CON	TENT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	ANI GRAIN	
ELEV	DESCRIPTION	A PL	œ		BLOWS 0.3 m	N OF				RENG	TH (kl	Pa) FIFLD V	ANF	₩p		··		9 E E S	RAL (kN/n	DISTRIB	
DEPTH	BESSIAI FISIA	STRATA PLOT	NUMBER	Щ		N E	ELEVATION		NCONFI JICK TF	INED RIAXIAL	. ×	FIELD V & Sensit LAB V	ivity ANE	WA ⁻	TER CC	NTEN	Γ(%)	o S	NATL	(%)	
			N	TYPE	ż	GR CO	ELE			0 6			00	1	0 2	20 3	30			GR SA	SI CL
-			Щ		00/			Ė													
Ē.,,,			11	SS	90/ 280			E							0						
	END OF BOREHOLE	11/1			mm			-													
12.6	END OF BOREHOLE Notes: 1) Water encountered at a depth of 1.5 m below ground surface (mBGS) during drilling. 2) Water was at a depth of 2.1 mBGS upon completion of drilling. 3) Borehole caved at a depth of 2.1 mBGS upon completion of drilling. 4) 51 mm dia. Monitoring Well was installed in borehole upon completion of drilling. Water Level Reading Date W.L. Depth (mBGS) April 28, 2017 1.05 May 9, 2017 0.70			SS	280																

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Continuous Flight Auger- Auto Hammer

Diameter: 155/205 mm REF. NO.: 17-1780GHE

Date: Apr/10/2017 ENCL NO.: 4

BH LC	OCATION: See Borehole Location Plan SOIL PROFILE		-	AMPL	EC	1	1	DYNA	MIC CC	NE PEN	NETRA	TION									
	30IL FROFILE			AIVIFL		8		RESIS	TANCE	PLOT	\geq		400	PLAST LIMIT	IC NATI	JRAL TURE	LIQUID LIMIT	z	NATURAL UNIT WT (kN/m³)	REM	MARKS AND
(m)		LOT			SI E	GROUND WATER CONDITIONS	z		10 4	RENG	L	1	100	W _P		TENT W	WL	POCKET PEN. (Cu) (kPa)	L UNI	GRA	IN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	ER		BLOWS 0.3 m	ON OF	EVATION		NCONF		IП (К +	FIELD \ & Sensi	VANE itivity	-		>		OCK (CCK	TURA (KN	DISTR	IBUTION (%)
		TRA	NUMBER	TYPE	<u> </u>	ROL	LEV.			RIAXIAL	. ×	LAB V	'ANE		TER CC		` '	"	¥		
133.6 - 13 9.4	TOPSOIL: (180 mm)	.74 1 ³⁷ .	z	Ĺ	-	Ø 0			10 4	0 6	0	80	100		0 2	20 :	30			GR SA	A SI CL
0.2	REWORKED SILTY FINE SAND:	\overline{X}	1	SS	4	8 8	-Concr	ete L								0					
-	trace organics, trace rootlets, dark brown to brown, wet, loose to	XX				Ţ	-Bento														
-	compact	\bowtie	\vdash				W. L. W. L.														
132.5	SILTY FINE SAND: trace clay,	X	2	SS	23		Apr 28									0					
1.1 132.2	trace rootlets, brown, wet, compact					1:目:															
1.4	FINE SAND AND SILT TO FINE SANDY SILT: trace clay, brown to						132 Sand											1			
-	grey, wet, compact to dense		3	SS	26	1 1 1		E								0					
-							-Scree	n F													
[\vdash			╁┋		ŀ													
-			4	SS	48	l:目:	131	-							0						
-3								Ė													
-	grey				10			-													
Ė			5	SS	43										0						
-							130											1			
<u>4</u> 129.5								F													
4.0	SILT: some fine sand, trace clay, layers of fine sand and silt, grey,							F													
-	wet, dense						129														
[6	SS	39		123	-							0						
<u>5</u>			Ĺ					_													
-							N 1	ļ													
-128.0 5.6	FINE SAND AND SILT: trace clay,						128	al Pacl	`					<u> </u>				l			
5.0	grey, wet, very dense							Ē													
<u>6</u> -					50/			-													
-			7	SS	150			-							0						
-					\ <u>mm</u>		127	-													
- 126.6																					
7.0	SILT: some fine sand, trace to	Ш						-													
Ė	some clay, seams of fine sand, grey, wet, compact							Ē													
-							126											1			
125.5			8	SS	30			Ŀ							0						
8.1	END OF BOREHOLE																				
	Notes: 1) Water encountered at a depth of																				
	0.8 m below ground surface (mBGS) during drilling.																				
	Borehole caved at a depth of 1.8 mBGS upon completion of drilling.																				
	3) 51 mm dia. Monitoring Well was																				
	installed in borehole upon completion of drilling.																				
	-																				
	Water Level Reading Date W.L. Depth (mBGS)																				
	April 28, 2017 0.76 May 9, 2017 0.57																				
	a, 0, 2011 0.01																				
						GRAPH				,		8 =3%	,								

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Continuous Flight Auger- Auto Hammer

Diameter: 155/205 mm REF. NO.: 17-1780GHE

Date: Apr/05/2017 ENCL NO.: 5

BH LC	OCATION: See Borehole Location Plan																			
	SOIL PROFILE		S	AMPL	ES	<u>~</u>		RESIS	TANCE	PLOT	NETRA	IION		PLASTI	C NATU	JRAL	LIQUID		WT	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI NCONF JICK TE	L RENG INED RIAXIAL	TH (ki + . ×	FIÉLD V. & Sensiti LAB VA	ANE vity	W _P 	CON' V TER CC	TENT v D ONTENT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
136.1 - 13 9.9 - 0.2	TOPSOIL: (200 mm) REWORKED SAND AND SILT: some clay, some gravel, trace organics, trace rootlets, brown, wet,	314	1	SS	3	X \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ete 135.8 i 135.7 i	m m						0			-		GR SA SI CE
135.0 1.1	very loose to dense SANDY SILT TILL TO SAND AND SILT TILL: some clay, trace gravel,		2	SS	40		135 -Bento	ľ							0					
	layers of silty sand, containing cobbles and boulders, brown to grey, moist to wet, dense to very dense —cobbles and boulders		3	SS	50/ 150 mm		134	-						0						
-	grey		4	SS	67			-						0						
- - - -		0	5	SS	73		133	-						0						
<u>4</u> 132.1 4.0	SILTY SAND: some gravel, containing cobbles and boulders, grey, wet, very dense						132 -Sand -Scree													
- - - 5 -			6	SS	68		131							c	×					
5.6	CLAYEY SILT TILL: some sand to sandy, trace gravel, containing cobbles and boulders, grey, moist, hard				50 /		130	- - - - - -												
- - - - - - 129.1			7	SS	150 mm		-Natura	- - - - al Pacl	<u> </u>						0					
7.0	CLAYEY SILT: trace sand, trace gravel, grey, moist, hard		8	SS	50 /		129								0					
7.8	END OF BOREHOLE Notes: 1) Water encountered at a depth of 1.8 m below ground surface (mBGS) during drilling. 2) Water was at a depth of 1.5 mBGS upon completion of drilling. 3) 51 mm dia. Monitoring Well was installed in borehole upon completion of drilling. Water Level Reading Date W.L. Depth (mBGS) April 28, 2017 0.39 May 9, 2017 0.27		8	SS	130 mm										0					

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Continuous Flight Auger- Auto Hammer

Diameter: 155/205 mm REF. NO.: 17-1780GHE

Date: Apr/05/2017 ENCL NO.: 6

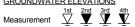
BH LO	CATION: See Borehole Location Plan							DVNA	MIC CO	NE DE	VIETD A	TION								
	SOIL PROFILE		S	AMPL	.ES	· ~		RESIS	TANCE	NE PEI PLOT	NETRA	TION		PLASTI	C NAT	URAL	LIQUID		Ļ	REMARKS
(m)		=				GROUND WATER CONDITIONS		2	0 4	0 6	0	30 1	00	PLASTI LIMIT			LIMIT	BEN.	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZE
ELEV	DESCRIPTION	STRATA PLOT	_w		BLOWS 0.3 m	M O.	ELEVATION			RENG	TH (k	Pa)	/ANE	W _P		w 0	W _L	SKET SKET	RAL L	DISTRIBUTION
DEPTH	DESCRIPTION	ATA.	/BEI	ш	0.0	N F	×		NCONE	ined Riaxial	+	FIELD \ & Sensi	tivity	WA ⁻	TER CO	ONTEN	T (%)	δ _O	DTA)	(%)
135.5		STR	NUMBER	TYPE	ż	GR CO	H						00				30		_	GR SA SI CL
139.9	TOPSOIL: (200 mm)	11/2					Concr	ete												
0.2	FILL: silty fine sand, trace organics, trace rootlets, dark brown to brown,	\bowtie	1	SS	4	¥	125	Ė								•				
134.8	wet, loose	\boxtimes				<u>*</u>	W. L.	135.0 ı	n											
0.7	SANDY SILT TILL: trace to some				76 /	<u> </u>	May 0 W. L.								_					
Ë l	clay, trace gravel, pockets of sand, containing cobbles and boulders,		2	SS	280 mm		Apr 28	i, 2017 L							0					
	brown to grey, moist, very dense	•					-Bento													
F							134													
-,			3	SS	87			-						0						
	grey						400	-												
F		Ш	4	SS	94		133							٥						
132.6	FINE SANDY SILT: trace clay,	Ш					1	-												
2.9	trace gravel, grey, wet, very dense		5	SS	50 /	[:∄:		-							0					
					80 mm		122	-												
F			1		ļ		132	-												
131.6		Ш						-												
3.9	CLAYEY SILT TILL: some sand to sandy, trace gravel, containing		1			: ∄:		-												
ĖΙ	cobbles and boulders, grey, moist,	H	1				Sand	<u> </u>												
F	hard				50 /	目	Scree	n F												
- - 5		111	6	SS	130 mm	I 目 :		Ė						°	}					
-					\			-												
130.0		14				ŀ⊞·	130	_												
5.5	SANDY SILT TILL: trace to some clay, trace gravel, containing							-												
6	cobbles and boulders, grey, moist,						1	E												
	very densecobbles and boulders		7	SS	50 /	500		-						٥						
E					80 mm		129											1		
1000							123	-												
128.6 7 6.9	GRAVELLY SAND: trace silt,	'nÜ	1					Ē												
!	pockets of silt, containing cobbles	6 O					Natur	al Pacl [(
	and boulders, grey, wet, very dense	0					128													
E		o. ()					1													
- ₈ 127.4		0	8	SS	59		1	Ŀ							0					
8.1	END OF BOREHOLE Notes:																			
	1) Water encountered at a depth of																			
	0.8 m below ground surface (mBGS) during drilling.																			
	2) Water was at a depth of 0.3																			
	mBGS upon completion of drilling. 3) Borehole caved at a depth of 6.7																			
	mBGS upon completion of drilling.																			
	4) 51 mm dia. Monitoring Well was installed in borehole upon																			
	completion of drilling.																			
	Water Level Reading																			
	Date W.L. Depth (mBGS)																	1		
	April 28, 2017 0.76 May 9, 2017 0.49																			
																		1		
																		1		
																		1		
\Box			Ш					<u> </u>		<u> </u>		1	1		<u> </u>		[Ь_		
	DWATER ELEVATIONS					<u>GRAPH</u>	. 3	√3. I	Number	s refer	_	8 =3%		at Eailur						

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

DATUM: Geodetic


DRILLING DATA

Method: Continuous Flight Auger- Auto Hammer

Diameter: 155/205 mm REF. NO.: 17-1780GHE

Date: Apr/05/2017 ENCL NO.: 7

BH LC	CATION: See Borehole Location Plan					1		IDVNA	MIC CC	NE DEI	VIETD A	TION									
	SOIL PROFILE		S	AMPL	ES.	œ		RESIS	TANCE		NETRA	TION		PLASTI	IC NATI	URAL	LIQUID		WT	REMARK	s
(m)		þ			\sqrt{\sq}\}}\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}\signt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}\signt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	GROUND WATER CONDITIONS	-		1	1	1	80 1	00	LIMIT W _P	CON	TENT	LIMIT W _L	T PEN (Pa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ	Œ
ELEV DEPTH	DESCRIPTION	STRATA PLOT	띪		BLOWS 0.3 m	V DN YOITI	ELEVATION		AR ST NCONF		TH (kf +	Pa) FIELD V & Sensit	ANE	⊢		o	<u> </u>	OCKE (Cu) (I	'URAL (KN/I	DISTRIBUTI	ON
		TRA	NUMBER	TYPE	N	ROU	LEVA	● QI	JICK TI	RIAXIAL	- ×	LAB V	ANE		TER CC		` '	۵	NA	(%)	
136.7	TOPSOIL: (530 mm)	.74 1 ^N .	Z ·	Ĺ	F	υ ō ▼] [▼		_	20 4	10 6	8 08	30 1	00	1	0 2	20 3	30			GR SA SI	CL
F	101 0012. (000 11111)	1/ \s\	1	SS	4		-Concr	ete [0					
_136.1 - 13 6.6	REWORKED SAND AND SILT:	Γ					136	-													
0.7	trace to some clay, trace organics, trace rootlets, dark brown, wet, very		1		.		130	-													
<u> </u>	loose		2	SS	14			_						'	Φ						
	SANDY SILT TILL: trace clay, trace gravel, pockets of sand, layers of	•	ł			¥	Ŵ. L.	⊩ 135.4 ı	n n												
-	silty sand, containing cobbles and boulders, brown to grey, moist to		3	SS	44	$\underline{\vee}$	May 09 W. L.								0						
2	wet, compact to very dense		Ŀ		ļ		Apr 28	i, 2017 L													
			-					E													
-			4	SS	68		124	-							•						
<u> </u>			┈				134	-													
-	grey	•	┢			1:目:															
ŧ l			5	SS	45]: :								°							
-							133														
4						[:目:		-													
-							Sand														
-	containing shale fragments		igwdap				-Scree	լ n													
- - 5	containing shale hagments		6	SS	45		132	-						0							
-						1:目:		-													
131.1			1																		
5.6	SILTY SAND TILL: some gravel, trace clay, layers of silty sand,	ļφļ					131														
<u>-6</u>	containing cobbles and boulders,					J: B :															
<u> </u>	grey, moist to wet, very dense	j&	7	SS	91/		-Natura	l∸ al Pacl	 <					0							
6.5	END OF BOREHOLE	111			mm			-													
	Notes: 1) Water encountered at a depth of																				
	1.5 m below ground surface (mBGS) during drilling.																				
	51 mm dia. Monitoring Well was																				
	installed in borehole upon completion of drilling.																				
	Water Level Reading																				
	Date W.L. Depth (mBGS) April 28, 2017 1.62																				
	May 9, 2017 1.31																				
\Box			Ц_			CDADH	L	<u> </u>	Numbo			2 – 30/.		Ц					I		

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Continuous Flight Auger- Auto Hammer

Diameter: 155/205 mm REF. NO.: 17-1780GHE

Date: Apr/13/2017 ENCL NO.: 8

BH LOCATION: See Borehole Location Plan

BH LC	OCATION: See Borehole Location Plan SOIL PROFILE		۰ ا	AMPL	EC	l	ı	DYNA	MIC CC	NE PEI	NETR/	ATION		1						
	30IL PROFILE			AIVIFL	.E3	8						_		PLASTI	IC NATI MOIS CON	JRAL TURE	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	r wt	REMARKS AND
(m)		LOT			SIE	GROUND WATER CONDITIONS	z		20 4 AD ST	ĩ .	1	1	100	W _P		TENT W	WL	ET PE (kPa)	L UNI	GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER		BLOWS 0.3 m	JND	ਣ W. L. Apr 28 ਘ	136.8	m _{CONF}	INED	+	FIELD \ & Sensi	/ANE itivity)———		POCK (Cu)	TURA (KN	DISTRIBUTION (%)
400.4		STRA	N N N N N N N N N N N N N N N N N N N	TYPE	ž	SROI		1 20 17	ÚICK T 20 4	riaxial 10 6	. ×	LAB V	ANE 100	1	TER CC		I (%) 30		₹	GR SA SI CL
136.1 139:9	TOPSOIL: (220 mm)	31 1/2.	-		=		Conci						1							GR SA SI CL
0.2	REWORKED SILTY FINE SAND:		1	SS	2	V	COLICI	E						0						
E	trace organics, trace rootlets, brown, moist, very loose	\bowtie						-												
<u>-</u> -135.1		\bowtie	2	SS	3			-							0					
1.1	SILTY FINE SAND: trace organics,	M	1	33	3		135													
-	trace rootlets, brown, moist to wet, very loose to dense	誾	<u> </u>					ŀ												
	·	闊	3	SS	14			-								0				
2		陆	├				40.4	-												
-		朏	┢				134													
122.4		陆	4	SS	40			_								•				
133.4	FINE SAND AND SILT: trace clay,	111	t					ŀ												
- 3	grey, wet to saturated, very dense		⊢				133													
F			. 5	SS	52										0					
F								-												
±132.1]					-												
4.0	SILTY FINE SAND: trace clay, grey, wet to saturated, dense		1				132													
E	grey, wer to saturated, derise							-												
			6	SS	46										0					
5		誾	Ĺ		-		131	-												
		闊					131	-												
-130.6 5.6	FINE SAND AND SILT: trace clay,		1					-												
5.0	layers of silty fine sand, seams of		1					-												
-	clayey silt, grey, wet, very dense		<u> </u>				130													
-			7	SS	55			-							0					
F			t					-												
129.0																				
7.1	SILTY FINE SAND: trace clay,						129													
Ė	grey, wet, very dense		ł					-												
-			8	SS	50 /			-							0					
8			1		mm		128													
		闊					120	Ė												
127.5 8.6	SILT TO FINE SANDY SILT: trace		1					-												
- 0.0	to some clay, grey, wet, compact							-												
							127	_												
-			9	SS	12			Ė							0					
<u> </u>								-												
10							400	ŀ												
[126													
-								Ė												
			10	SS	28			ŧ								0				
11			Ľ	- 55	20		125	<u> </u>												
[E												
124.5			1					Ė												
12			1					-												
	Continued Next Page					GRAPH	•	•		rs refer		8= 3%	,							

GROUNDWATER ELEVATIONS

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Continuous Flight Auger- Auto Hammer

Diameter: 155/205 mm REF. NO.: 17-1780GHE

Date: Apr/13/2017 ENCL NO.: 8

BH LOCATION: See Borehole Location Plan

БПЕС	SOIL PROFILE		s	SAMPL	.ES			DYNA! RESIS	MIC CO TANCE	NE PEN PLOT	NETRA	TION			NATI	LIDAI				REMARKS
(m) ELEV	DESCRIPTION	N PLOT	~		BLOWS 0.3 m	GROUND WATER CONDITIONS	NOI	2 SHE	0 4 AR STI	0 6 RENG	0 8 TH (kF	30 1 Pa)	00 L	PLAST LIMIT W _P		TURE TENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	RAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTION
DEPTH		STRATA PLOT	NUMBER	TYPE	"N" BL	GROUN	ELEVATION	● QI	NCONF JICK TF 0 4	RIAXIAL	. ×	FIELD V & Sensit LAB V	ANE 00		TER CC		Γ (%) 30	PO 0)	NATU	(%) GR SA SI CL
- - -	SILTY CLAY TILL: trace to some sand, trace gravel, grey, moist to wet, very stiff(Continued)	13/	11	SS	20		124								0					
- - - - 13								-												
- 122.9 - 13.2 -	SANDY SILT TILL: trace clay, trace gravel, containing cobbles and		1				123	-												
- 122.3 14 13.9	boulders, grey, moist to wet, very dense cobbles and boulders	0	12	SS	50 / 80		-Bento	L nite L												
-	SAND AND SILT TILL: some clay, trace to some gravel, zones of silty sand, containing cobbles and boulders, grey, wet, dense to very dense	0			\ <u>mm</u> _/		122	-												
- 1 <u>5</u> -	auger grinding	0					121													
- -			13	SS	50			-							0					
16 -		0					120	-												
- - -		 						-												
<u>17</u> -	cobbles and boulders	φ].	14	SS	50/ 100 mm		119							(-					
118.4	CLAYEY SILT TILL: some sand to																			
17.8	sandy, trace gravel, grey, moist, hard						118													
-			15	SS	100 / 250 mm									c						
<u>19</u> - -							117													
- - -								-												
<u>20</u> - - -			16	SS	78		116							(
115.3 21 20.8	SANDY SILT TILL: trace to some																			
<u>21</u> 20.6	clay, trace gravel, grey, moist to wet, very dense						115													
			17	SS	71															
<u>22</u> - - -							114	-												
-																				
<u>23</u> - - -			18	SS	61		113	-							}					
- - - -								-												
CDOUN	Continued Next Page		•			GRAPH	₊ 3	× ³ : ¹	Number	s refer		8 =3%	Strain	at Failu	ro.		1			

GRAPH NOTES + 3 , \times 3 : Numbers refer to Sensitivity

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical Investigation for Proposed Residential Development

CLIENT: JFC Developments Ltd.

PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, Ontario

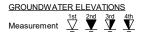
DATUM: Geodetic

DRILLING DATA

Method: Continuous Flight Auger- Auto Hammer

Diameter: 155/205 mm REF. NO.: 17-1780GHE

Date: Apr/13/2017 ENCL NO.: 8


BH L	OCATION: See Borehole Location Plan							IDVALA	MIO 00	NE DE	IETD A	TION								
	SOIL PROFILE		s	AMPL	ES.	r		RESIS	MIC CO TANCE	PLOT	NETRA	IION		PLASTI	C NATI	URAL	LIQUID		Υ	REMARKS
(m)		 -			(0)	GROUND WATER CONDITIONS		2	20 4	10 6	8 0	30 1	00	PLASTI LIMIT W _P	CON	TENT W	LIMIT W _L	POCKET PEN. (Cu) (kPa)	VINIT \ (⁶ ر	AND GRAIN SIZE
ELEV DEPTH	DESCRIPTION	A PL	E.		BLOWS 0.3 m	M DY NOIT	NOIT		AR ST		TH (ki	Pa) FIELD V & Sensiti	ANE	₩ _P		0	I	Cu) (k	(kN/m	DISTRIBUTION
DEPIR		STRATA PLOT	NUMBER	TYPE		SOUN	ELEVATION	• Q	UICK TI	RIAXIAL	. ×	LAB VA	ANE		TER CC			P.	NAT	(%)
	CANDY OIL T. TILL . trace to come	<u> </u>	ž	≱	ž	<u>p</u> 8			20 4	10 6	8 0	30 10	00	1	0 2	20 3	30			GR SA SI CL
-	SANDY SILT TILL: trace to some clay, trace gravel, grey, moist to wet,						112													
Ė	very dense(Continued)	y dense(Continued)																		
Ė			Ľ		00			-												
<u>25</u> -			1				111	<u> </u>												
-								-												
F			1					-												
<u>26</u>			1																	
F			20	SS	58		110													
F			1					_												
- - 27			1																	
-			1				109	-												
Ė			┈					Ė												
-			21	SS	53			-							0					
<u>28</u>			1				108	-												
107.8								-												
28.4	PROBABLE WEATHERED SHALE: grey, moist						Sand	-												
- 29							Scree	n F												
F			22	<u>ss</u>	50/ 100	ŀ∄:	107	_						,	,					
- -106.6					\mm			-												
29.6	END OF BOREHOLE Notes:																			
	Water encountered at a depth of 1.5 m below ground surface																			
	(mBGS) during drilling. 2) 51 mm dia. Monitoring Well was																			
	installed in borehole upon completion of drilling.																			
	_																			
	Water Level Reading Date W.L. Depth (mBGS)																			
	April 28, 2017 -0.65 May 9, 2017 -0.63																			
	, 3, 25																			
L																				

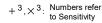
DRILLING DATA PROJECT: Supplementray Geotechnical Investigation for Proposed Residential Development METHOD: Continuous Flight Auger - Auto Hammer CLIENT: 869547 Ontario Inc. DIAMETER: 155 mm PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, ON FIELD ENGINEER: JF DATE: 2021-08-27 DATUM: N/A SAMPLE REVIEW: CL REF. NO.: 17-1780GHE3 BH LOCATION: See Borehole Plan Location CHECKED: DX ENCL. NO.: 2 SAMPLES DYNAMIC PENETRATION TEST SOIL PROFILE REMARKS Natural O SPT blows/0.3m Plastic Limit **GROUND WATER** ≥ Cone Moisture Content Liquid Limit AND "N" BLOWS/0.3n 20 STRATA PLOT GRAIN SIZE **EVATION** SHEAR STRENGTH (kPa) DISTRIBUTION ELEV DEPTH DESCRIPTION ● Unconfined X Field Vane & Sensitivity

▲ Quick Triaxial ☑ Penetrometer + Lab Vane (%) WATER CONTENT (%) TYPE (m) 20 30 40 20 40 60 80 10 GR SA SI CL 0.0 **TOPSOIL:** (120 mm) 0.1 FILL: silty fine sand, organic inclusions, rootlet inclusions, SS 11 brown, moist, compact PROBABLE FILL: silty fine sand, 0.7 brown, moist, loose SS 6 0 SS 6 3 0 FINE SANDY SILT: trace clay, containing cobbles and boulders, brown, moist to wet, very dense 4 SS 65 0 --- auger grinding SS 5 70 SILTY FINE SAND: grey, wet, 4.0 dense 6 SS 43 O 5.0 END OF BOREHOLE Notes: 1) Water encountered at a depth of 3.0 m below ground surface (mBGS) during drilling. 2) Water was at a depth of 3.2 mBGS upon completion of drilling. 3) Borehole caved at a depth of 4.2 mBGS upon completion of drilling.

2022-11-18

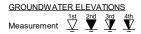
DX.GPJ

GEOPRO 17-1780GHE3 BH LOG 20211118 - NT - NG -


DRILLING DATA PROJECT: Supplementray Geotechnical Investigation for Proposed Residential Development METHOD: Continuous Flight Auger - Auto Hammer CLIENT: 869547 Ontario Inc. DIAMETER: 155 mm PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, ON FIELD ENGINEER: JF DATE: 2021-08-29 DATUM: N/A SAMPLE REVIEW: CL REF. NO.: 17-1780GHE3 BH LOCATION: See Borehole Plan Location CHECKED: DX ENCL. NO.: 3 SAMPLES DYNAMIC PENETRATION TEST SOIL PROFILE REMARKS Natural O SPT blows/0.3m Plastic Limit **GROUND WATER** ≥ Cone Moisture Content Liquid Limit AND "N" BLOWS/0.3n 20 STRATA PLOT GRAIN SIZE **EVATION** SHEAR STRENGTH (kPa) DISTRIBUTION ELEV DEPTH DESCRIPTION ● Unconfined X Field Vane & Sensitivity

▲ Quick Triaxial ☑ Penetrometer + Lab Vane (%) WATER CONTENT (%) (m) 10 20 30 40 20 40 60 80 GR SA SI CL TOPSOIL: (300 mm) SS 1 4 0 REWORKED SILTY FINE SAND: rootlet inclusions, brown, moist, very loose to loose 2A SS 0 SILTY FINE SAND: pockets of 2B SS sandy silt, brown, moist, very loose to dense SS 21 3 SS 45 0 --- layers of fine sandy silt SS 46 0 SILTY SAND: brown, wet, 4 0 compact 6 SS 28 5.0 END OF BOREHOLE 1) Water encountered at a depth of 4.6 m below ground surface (mBGS) during drilling. 2) Water was at a depth of 4.4 mBGS upon completion of drilling. 3) Borehole caved at a depth of 4.6 mBGS upon completion of drilling.

DX.GPJ

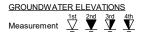

GEOPRO 17-1780GHE3 BH LOG 20211118 - NT - NG -

DRILLING DATA PROJECT: Supplementray Geotechnical Investigation for Proposed Residential Development METHOD: Continuous Flight Auger - Auto Hammer CLIENT: 869547 Ontario Inc. DIAMETER: 155 mm PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, ON FIELD ENGINEER: JF DATE: 2021-08-27 DATUM: N/A SAMPLE REVIEW: CL REF. NO.: 17-1780GHE3 BH LOCATION: See Borehole Plan Location CHECKED: DX ENCL. NO.: 4 SAMPLES DYNAMIC PENETRATION TEST SOIL PROFILE REMARKS Natural O SPT Plastic Limit **GROUND WATER** blows/0.3m ≥ Cone Moisture Content Liquid Limit AND "N" BLOWS/0.3n 20 STRATA PLOT GRAIN SIZE **EVATION** SHEAR STRENGTH (kPa) DISTRIBUTION ELEV DEPTH DESCRIPTION ● Unconfined X Field Vane & Sensitivity

▲ Quick Triaxial ☑ Penetrometer + Lab Vane (%) WATER CONTENT (%) (m) 30 40 20 40 60 80 10 20 GR SA SI CL TOPSOIL: (300 mm) SS 2 1 REWORKED SILTY FINE SAND: organic inclusions, rootlet inclusions, brown, moist, very loose 2A SS SILTY FINE SAND: containing 1.1 2B SS cobbles and boulders, brown, moist, very loose to dense SS 3 11 --- auger grinding SS 32 FINE SAND AND SILT TO FINE SANDY SILT: layers of silt, layers of silty sand, brown, moist to wet, 5 SS 25 compact 0 SILTY SAND: trace gravel, layers 4.0 of sandy silt, brown, wet, compact 6 SS 27 0 5.0 END OF BOREHOLE 1) Water encountered at a depth of 3.0 m below ground surface (mBGS) during drilling. 2) Water was at a depth of 3.2 mBGS upon completion of drilling. 3) Borehole caved at a depth of 4.3 mBGS upon completion of drilling.

DX.GPJ

GEOPRO 17-1780GHE3 BH LOG 20211118 - NT - NG -

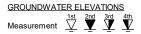


DRILLING DATA PROJECT: Supplementray Geotechnical Investigation for Proposed Residential Development METHOD: Continuous Flight Auger - Auto Hammer CLIENT: 869547 Ontario Inc. DIAMETER: 155 mm PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, ON FIELD ENGINEER: JF DATE: 2021-08-27 DATUM: N/A SAMPLE REVIEW: CL REF. NO.: 17-1780GHE3 BH LOCATION: See Borehole Plan Location CHECKED: DX ENCL. NO.: 5 SAMPLES DYNAMIC PENETRATION TEST SOIL PROFILE REMARKS Natural O SPT blows/0.3m Plastic Limit **GROUND WATER** ≥ Cone Moisture Content Liquid Limit AND "N" BLOWS/0.3n 20 STRATA PLOT GRAIN SIZE EVATION SHEAR STRENGTH (kPa) DISTRIBUTION ELEV DEPTH DESCRIPTION ● Unconfined X Field Vane & Sensitivity

▲ Quick Triaxial ☑ Penetrometer + Lab Vane (%) WATER CONTENT (%) TYPE (m) 20 30 40 20 40 60 80 10 GR SA SI CL TOPSOIL: (250 mm) SS 7 REWORKED SILTY FINE SAND: 1 0 some silt, organic inclusions, rootlet inclusions, brown, moist, loose 2A SS 0 SILTY FINE SAND: brown, moist 1.1 2B SS to wet, loose to compact 3 SS 20 FINE SANDY SILT: trace clay, grey, moist to wet, dense 4 SS 31 2.9 SILT: trace clay, some sand, grey, wet, dense 5 SS 43 0 4.0 FINE SANDY SILT: some clay, grey, wet, very dense 6 SS 58 C 5.0 END OF BOREHOLE Notes: 1) Water encountered at a depth of 1.4 m below ground surface (mBGS) during drilling. 2) Water was at a depth of 2.0 mBGS upon completion of drilling. 3) Borehole caved at a depth of 3.2 mBGS upon completion of drilling.

2022-11-18

DX.GPJ


GEOPRO 17-1780GHE3 BH LOG 20211118 - NT - NG -

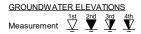
DRILLING DATA PROJECT: Supplementray Geotechnical Investigation for Proposed Residential Development METHOD: Continuous Flight Auger - Auto Hammer CLIENT: 869547 Ontario Inc. DIAMETER: 155 mm PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, ON FIELD ENGINEER: JF DATE: 2021-08-27 DATUM: N/A SAMPLE REVIEW: CL REF. NO.: 17-1780GHE3 BH LOCATION: See Borehole Plan Location CHECKED: DX ENCL. NO.: 6 SAMPLES DYNAMIC PENETRATION TEST SOIL PROFILE REMARKS Natural O SPT Plastic Limit **GROUND WATER** blows/0.3m ≥ Cone Moisture Content Liquid Limit AND "N" BLOWS/0.3n STRATA PLOT GRAIN SIZE EVATION SHEAR STRENGTH (kPa) DISTRIBUTION ELEV DEPTH DESCRIPTION ● Unconfined X Field Vane & Sensitivity

▲ Quick Triaxial ☑ Penetrometer + Lab Vane (%) WATER CONTENT (%) TYPE (m) 30 40 20 40 60 80 10 20 GR SA SI CL TOPSOIL: (250 mm) SS FILL: silty fine sand, trace gravel, 13 ဂ organic inclusions, rootlet inclusions, containing rock fragments, brown, moist, loose to compact SS 6 0 ЗА SS 0 SILTY FINE SAND: layers of silt, 3B SS containing cobbles and boulders, brown, wet, loose to compact --- auger grinding SS 26 0 FINE SAND AND SILT TO SILTY FINE SAND: grey, moist to wet, dense SS 5 43 0 SILT: trace to some clay, trace 4 0 sand, interlayers of clayey silt, grey, moist to wet, dense 6 SS 33 O 5.0 END OF BOREHOLE Notes: 1) Water encountered at a depth of 1.8 m below ground surface (mBGS) during drilling. 2) Water was at a depth of 2.2 mBGS upon completion of drilling. 3) Borehole caved at a depth of 3.4 mBGS upon completion of drilling.

2022-11-18

DX.GPJ

GEOPRO 17-1780GHE3 BH LOG 20211118 - NT - NG -



DRILLING DATA PROJECT: Supplementray Geotechnical Investigation for Proposed Residential Development METHOD: Continuous Flight Auger - Auto Hammer CLIENT: 869547 Ontario Inc. DIAMETER: 155 mm PROJECT LOCATION: Parts of Lots 3 and 4, Concession 5, Pickering, ON FIELD ENGINEER: JF DATE: 2021-08-27 DATUM: N/A SAMPLE REVIEW: CL REF. NO.: 17-1780GHE3 BH LOCATION: See Borehole Plan Location CHECKED: DX ENCL. NO.: 7 SAMPLES DYNAMIC PENETRATION TEST SOIL PROFILE REMARKS Natural O SPT blows/0.3m Plastic Limit **GROUND WATER** ≥ Cone Moisture Content Liquid Limit AND "N" BLOWS/0.3n STRATA PLOT GRAIN SIZE **EVATION** SHEAR STRENGTH (kPa) DISTRIBUTION ELEV DEPTH DESCRIPTION ● Unconfined X Field Vane & Sensitivity

▲ Quick Triaxial ☑ Penetrometer + Lab Vane (%) WATER CONTENT (%) (m) 20 30 40 20 40 60 80 10 GR SA SI CL TOPSOIL: (350 mm) SS 3 0.4 FILL: silty fine sand, organic matters, rootlet inclusions, dark brown, moist, very loose CLAYEY SILT: some sand, trace gravel, interlayers of silt, layers of fine sand and silt, seams of sand, SS 22 brown, moist, very stiff SANDY SILT: some clay, trace gravel, layers of clayey silt, brown, moist, compact SS 3 22 4 SS 20 2.9 SANDY SILT TILL: some clay, trace gravel, layers of sandy silt, containing cobbles and boulders, 5 SS 33 O grey, moist, dense --- auger grinding 6 SS 50 5.0 END OF BOREHOLE 1) Borehole caved at a depth of 4.5 m below ground surface (mBGS) upon completion of drilling.

GEOPRO 17-1780GHE3 BH LOG 20211118 - NT - NG - DX.GPJ

LIMITATIONS TO THE REPORT

This report is intended solely for the Client named. The report is prepared based on the work has been undertaken in accordance with normally accepted geotechnical engineering practices in Ontario.

The comments and recommendations given in this report are based on information determined at the limited number of the test hole and test pit locations. The boundaries between the various strata as shown on the borehole logs are based on non-continuous sampling and represent an inferred transition between the various strata and their lateral continuation rather than a precise plane of geological change. Subsurface and groundwater conditions between and beyond the test holes and test pits may differ significantly from those encountered at the test hole and test pit locations. The benchmark and elevations used in this report are primarily to establish relative elevation differences between the test hole and test pit locations and should not be used for other purposes, such as grading, excavating, planning, development, etc.

It should be noted that the results of the designated substance and chemical analysis refer only to the sample analyzed which was obtained from specific sampling location and sampling depth, and the presence of designated substance and soil chemistry may vary between and beyond the location and depth of the sample taken. Please note that the level of chemical testing outlined herein is meant to provide a broad indication of soil quality based on the limited soil samples tested. The analytical results contained in this report should not be considered a warranty with respect to the soil quality or the use of the soil for any specific purpose or the acceptability of the soils for any excess soil receiving sites.

The report reflects our best judgment based on the information available to GeoPro Consulting Limited at the time of preparation. Unless otherwise agreed in writing by GeoPro Consulting Limited, it shall not be used to express or imply warranty as to any other purposes. No portion of this report shall be used as a separate entity, it is written to be read in its entirety. The information contained herein in no way reflects on the environment aspects of the project, unless otherwise stated.

The design recommendations given in this report are applicable only to the project designed and constructed completely in accordance with the details stated in this report. Otherwise, our responsibility is limited to interpreting the subsurface information at the borehole or test pit locations.

Should any comments and recommendations provided in this report be made on any construction related issues, they are intended only for the guidance of the designers. The number of test holes and test pits may not be sufficient to determine all the factors that may affect construction activities, methods and costs. Such as, the thickness of surficial topsoil or fill layers may vary significantly and unpredictably; the amount of the cobbles and boulders may vary significantly than what described in the report; unexpected water bearing zones/layers with various thickness and extent may be encountered in the fill and native soils. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and make their own conclusions as to how the subsurface conditions may affect their work and determine the proper construction methods.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. GeoPro Consulting Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.