

PRELIMINARY HYDROGEOLOGICAL REVIEW REPORT

1095 Kingston Road, Pickering, Ontario PREPARED FOR: 1095 Kingston Road Limited 22 St. Clair Avenue East, Suite 1203 Toronto, ON M4T 2S5

ATTENTION: Nik Papapetrou

Grounded Engineering Inc. File No. 22 279 Issued April 7, 2025

TABLE OF CONTENTS

1	INTRODUCTION				
	1.1	Source Water Protection	2		
2	STUD	STUDY AREA MAP			
3	GEOLOGY AND PHYSICAL HYDROGEOLOGY				
4	GROUNDWATER ELEVATIONS				
	4.1	MONITORING WELL INFORMATION	4		
	4.2	Well Observations	4		
5	AQUII	FER TESTING	4		
	5.1	PUMPING TEST	4		
	5.2	SINGLE WELL RESPONSE TESTING (SLUG TESTS)	5		
	5.3	Soil Grain Size Distribution	5		
	5.4	LITERATURE	6		
6	SUMF	P MONITORING	6		
7	WATE	ER QUALITY	6		
8	WATE	ER BALANCE ANALYSIS	7		
9	PROP	POSED CONSTRUCTION METHOD	8		
	9.1	CONVENTIONAL SLAB ON GRADE/ GRADE BEAM OPTION	8		
	9.2	RAFT FOUNDATION OPTION	8		
10	PRIVA	ATE WATER DRAINAGE SYSTEM (PWDS)	9		
11	GROL	INDWATER EXTRACTION AND DISCHARGE	9		
12	EVAL	UATION OF IMPACT	11		
	12.1	ZONE OF INFLUENCE	11		
	12.2	LAND STABILITY	12		
	12.3	CITY'S SEWAGE WORKS	12		
	12.4	NATURAL ENVIRONMENT	13		
	12.5	LOCAL DRINKING WATER WELLS	13		
	12.6	CONTAMINATION SOURCE	13		
13	PROPOSED MITIGATION MEASURES AND MONITORING PLAN13				
14	LIMITATIONS				
15	CLOSURE				

G

Preliminary Hydrogeological Review Report 1095 Kingston Road, Pickering, Ontario April 7, 2025

FIGURES

- Figure 1 Site Location and Study Area Map
- Figure 2 Borehole and Monitoring Well Location Plan Existing Site Conditions
- Figure 3 Borehole and Monitoring Well Location Plan Proposed Site Conditions
- Figure 4 Subsurface Profile

APPENDICES

- Appendix A Borehole Logs; Abbreviations and Terminology
- Appendix B Aquifer Response Tests
- Appendix C Grain Size Analysis
- Appendix D HydrogeoSieveXL Data
- Appendix E Laboratory Certificate of Analysis
- Appendix F Dewatering Calculations and Finite Element Model
- Appendix G Water Balance
- Appendix H MECP Souce Water Protection Map

1 Introduction

1095 Kingston Road Limited has retained Grounded Engineering Inc. to provide preliminary hydrogeological engineering design advice for their proposed development at 1095 Kingston Road, in Pickering, Ontario.

Grounded has been provided with the following reports and drawings to assist in our scope of work:

- Site Survey, "Lot 25, Concession 1, City of Pickering", Completed by Holding Jones Vanderveen Inc., Dated January 12, 2024.
- Architectural Drawings, "1095 Kingston Road, Pickering", Created by BDP Quadrangle, Dated March 20, 2025 (Issued for ZBA Submission).
- Grading Plan, "1095 Kingston Road, Pickering, ON L1 B15", by Counterpoint Engineering Inc., Dated Mar. 24, 2025 (Issued for ZBA #1).

Property Information	
Location of Site	1095 Kingston Road, Pickering, Ontario, L1V 1B5
Ownership of Site	1095 Kingston Road Limited
Site Dimensions (m)	86 m x 239± m
Site Area (m ²)	20,605± m ²

Proposed Development	
Number of Building Structures	4
Number of Underground Levels	1
Lowest Finished Floor Elevation (FFE)	Majority of the P1 set at Elev. 84.5 masl, small portion of the P1 set at 83.7 masl
Approx. Base of Foundations*	Elev. 82.5 masl / 83.5 masl
Sub-Grade Area (m ²)	14,892 m ²
Land Use Classification	Residential
* Assumed: Raft Foundation/ Pile Caps &	Grade Beams and Spread Footings
Qualified Person and Hydrogeological	Review Information
Qualified Person	Sam Bastan, P.Eng.
Consulting Firm	Grounded Engineering Inc.
Date of Hydrogeological Review	April 7, 2025
Scope of Work	Review of MECP Water Well Records for the area
	 Review of geological information for the area

Qualified Person and Hydrogeological Review Information			
•	Review of topographic information for the area		
•	Advancement of 3 boreholes to a maximum depth of 19.4 m, which were instrumented with 3 monitoring wells.		
•	The preliminary engineering analysis provided here is based on available factual data from an investigation conducted by Grounded. The level of study presented in this report is consistent with the requirements for a Site Plan Control Application. Additional boreholes, wells, in-situ testing, and a detailed hydrogeological engineering report will be required for detailed design and building permit purposes.		
•	Completion of slug tests in all available monitoring wells		
•	Groundwater elevation monitoring on four (4) separate occasions		
•	Groundwater sampling and analysis to the Durham Region Sewer Use Limits		
•	Assessment of groundwater controls and potential impacts		
•	Report preparation in accordance with Ontario Water Resources Act, Ontario Regulation 387/04		

General Hydrogeological Characterization				
Site Topography	The site has an approximate ground surface elevation of 87.55 masl.			
Local Physiographic Features	The site is generally composed of cohesionless till, overlying sands, overlying bedrock.			
Regional Physiographic Features	The Iroquois plain on the north shore of Lake Ontario from Scarborough to Newcastle. A sand plain comprised of mosaic till plains and areas of silty lacustrine deposits. The two most important soils of the area are Darlington loam and Newcastle loam, the former developed on the upland areas of till and the latter on the lacustrine sediments in the lower lying areas. They are both good, well drained soils but in some areas can be poorly drained.			
Watershed	The site is located within the Lake Ontario Waterfront. Watershed. Locally, groundwater is anticipated to flow south towards Lake Ontario.			
Surface Drainage	Surface water is expected to flow towards municipal catch basins located on or adjacent to the site, via Kingston Road to the West or Dixie Road to the East.			

1.1 Source Water Protection

The Site is part of the Credit Valley – Toronto and Region – Central Lake Ontario (CTC) Source Protection Area. The Site is located within a regulated area of Toronto Region Conservation Authority (TRCA). A portion of the Site is located within a Highly Vulnerable Aquifer (score of 6) and Significant Groundwater Recharge Area (MECP, 2023). The source protection area is presented in Appendix H.

Based on the soil encountered at the Site during the subsurface investigation and the results of the in-situ hydraulic conductivity tests, the predominant upper native soils within the Site and Study Area are low permeability glacial tills. While the larger, regional area is classified as a Highly

Vulnerable Aquifer, the surficial soils of the Site and Study Areas do not behave as a Highly Vulnerable Aquifer. The City of Pickering's drinking water is municipally serviced from Lake Ontario.

2 Study Area Map

A map has been enclosed which shows the following information:

- All monitoring wells identified on site, and within the study area
- All boreholes identified on site
- All buildings identified on site and within the study area
- The site boundaries
- Any watercourses and drainage features within the study area

3 Geology and Physical Hydrogeology

The site stratigraphy, including soil materials, composition and texture are presented in detail on the borehole logs in Appendix A. A summary of stratigraphic units that were encountered at the site, as relevant to the current hydrogeological study, is as follows:

Site Stratigraphy					
Stratum/Formation	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)	Method of Determination	
Fill	0 - 3.0	88.5 - 84.4	1.0 x 10 ⁻³	Literature ¹	
Cohesionless Till	1.1 - 12.2	87.4 - 75.5	9.1 x 10 ⁻⁷	Slug Test	
Sands	9.1 - 16.8	79.1 - 71.7	9.6 x 10 ⁻⁵	Slug Test	
Bedrock	12.2 - 18.8	75.5 - 68.9	1.0 x 10 ⁻⁸	Literature ¹	

Surface Water						
Surface Water Body	Distance from site (m)	Direction from site	Hydraulically Connected to Site (yes/no)			
Frenchman's Bay	235	South	Yes			

¹ Freeze and Cherry (1979)

4 Groundwater Elevations

Well **Ground Surface** Top of Screen **Bottom of** Well ID Diameter **Screened Geological Unit** (masl) (masl) Screen (masl) (mm) BH1 76.7 73.4 50 87.4 Sand and Silt BH2 50 87.7 78.5 75.3 Sand and Silt Till/ Silty Sand 50 88.5 76.3 73.1 BH3 Sand

4.1 Monitoring Well Information

4.2 Well Observations

Well ID	Groundwater Elevation (masl)					
	Nov. 23, 2022	Jan. 12, 2024	Jan. 16, 2024	Feb. 3, 2025	Maximum	
BH1	82.1	82.4	82.5	82.1	82.5	
BH2	81.9	82.4	82.3	81.9		
BH3	82.0	82.3	82.3	82.0		

For design purposes, the groundwater table is at Elev. 82.5 m in the cohesionless till deposits. This deposit has a moderate to high permeability and will yield free-flowing water when penetrated.

Based on the measured groundwater elevations, the anticipated groundwater flow direction at this site is to the south.

Groundwater levels fluctuate with time depending on the amount of precipitation and surface runoff and may be influenced by known or unknown dewatering activities at nearby sites.

5 Aquifer Testing

5.1 Pumping Test

A pumping test was not attempted at the site. Slug tests were conducted and are presented in the section below.

5.2 Single Well Response Testing (Slug Tests)

The hydraulic conductivities from the monitoring wells were determined based on slug tests (single-well response tests). These tests involve rapid removal of water or addition of a "slug" which displaces a known volume of water from a single well, and then monitoring the water level in the well until it recovers. The results of the slug tests were analyzed using the Bouwer and Rice method (1976).

Well ID	Well Screen Elevation (masl)	Screened Geological Unit	Hydraulic Conductivity (m/s)
BH1	76.7 - 73.4	Sand and Silt	5.4 x 10 ⁻⁵
BH2	78.5 - 75.3	Sand and Silt Till/ Silty Sand	9.1 x 10 ⁻⁷
BH3	76.3 - 73.1	Sand	9.6 x 10 ⁻⁵

The hydraulic properties of the strata applicable to the site are as follows:

5.3 Soil Grain Size Distribution

The hydraulic conductivities of various soil types can also be estimated from grain size analyses. An assessment of the grain sizes was conducted using the excel-based tool, HydrogeoSieve XL (*HydrogeoSieve XL ver.2.2, J.F. Devlin, University of Kansas, 2015*). HydrogeoSieve XL compares the results of the grain size analyses against fifteen (15) different analytical methods.

Given our experience in the area as well as published literature, some of the geometric means provided for the soil were biased low by one or more methods. In these instances, the values determined by these methods were excluded from the mean. The table below illustrates the hydraulic conductivity values estimated from the mean of the analytical methods where the soil met the applicable analysis criteria.

Sample ID	Soil Description	Applicable Analysis Methods	Hydraulic Conductivity (m/s)
BH1-SS10	Sand and Silt Till	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	2.9 x 10 ⁻⁷
BH2-SS9	Sandy Silt, Clayey Till	Alyamani and Sen, Barr, Sauerbrei	8.9 x 10 ⁻⁹
BH3-SS4	Sand and Silt Till	Alyamani and Sen, Barr, Sauerbrei	1.2 x 10 ⁻⁸
BH3-SS11	Sand	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	7.8 x 10 ⁻⁶

The results of the analyses are presented in Appendix D.

5.4 Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Stratum/Formation	Hydraulic Conductivity (m/s)
Earth Fill	10 ⁻² to 10 ⁻⁶
Sands	10 ⁻² to 10 ⁻⁷
Silts	10 ⁻⁵ to 10 ⁻⁹
Glacial Tills	10 ⁻⁶ to 10 ⁻¹²
Clays	10 ⁻⁹ to 10 ⁻¹²
Bedrock (Shale)	10 ⁻⁶ to 10 ⁻¹³

6 Sump Monitoring

A new basement structure is proposed for the site. The monitoring of the existing sumps (where present) is excluded from the present scope.

7 Water Quality

One (1) unfiltered groundwater sample was collected and analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and or Canadian Association for Laboratory Accreditation.

The sample was collected directly from monitoring well BH3 on Nov. 23, 2022. The sample was analyzed for the following parameters:

- Durham Region Code Chapter 681 Table 1 Limits for Sanitary and Combined Sewers Discharge
- Durham Region Code Chapter 681 Table 2 Limits for Storm Sewer Discharge

The groundwater sample **exceeded** the **Limits for Storm Sewer Discharge** for the following parameters:

- Total Suspended Solids (Limit 15 mg/L, Result 34 mg/L)
- Chloroform (Limit 0.002 mg/L, Result 0.0062 mg/L)

The groundwater sample **met** the **Limits for Sanitary and Combined Sewer Discharge** for all parameters analyzed.

A true copy of the analysis report, Certificate of Analysis and a chain of custody record for the sample are enclosed.

8 Water Balance Analysis

A water balance model was prepared for the Property to assess the distribution of rainfall run-off and infiltration for existing (pre- and post-development) conditions (Appendix F). The Thornthwaite method was used to evaluate the relative balance between rainfall, evaporation and evapotranspiration in the shallow soil zones. The water balance for pre-and post-development conditions is summarized below:

Pre-Development Water Balance

	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Proposed Development	20,975	18,290	218	205	17,868

The post-development water balance accounts for hard surfaced areas created by buildings and pavements and uses the proposed land use statistic information provided by [architect firm name].

Post-Development Water Balance

	Area (m²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Proposed Development	20,975	18,290	2,784	2,620	12,886
Building Roof	10,260	8,947	-	-	8,947
Hard Surface Paving	3,230	2,817	-	-	2,817
Landscape Area	7,485	6,527	2,784	2,620	1,123

The volume of surface water run-off available from residential roof tops was calculated to be 7,926 m³, as noted in the above table. This volume of water will be available as a resource, to maintain groundwater recharge and function. The volume of roof run-off available is compared to the difference in infiltration volume between pre-development and post-development, as noted below:

Potential Post-Development Infiltration Deficit (m ³)	Volume of Roof Run-off Available (m ³)	
0	8,052	

9 Proposed Construction Method

For design purposes, the stabilized groundwater table is at Elev. 82.5± m. The groundwater table is present in the cohesionless till and sands units. The majority of the lowest (P1) FFE is at about Elev. 84.5 m, with a relatively small portion lowered down to Elev. 83.7 m.

The proposed shoring at the site is assumed to consist of conventional soldier piling and lagging for present purposes.

9.1 Conventional Slab on Grade/ Grade Beam Option

Excavations for a convention slab on grade/ grade beams will generally be made above the groundwater table, in relatively low permeability native soils that preclude the free flow of water into excavations. Within the zone of excavation, the boreholes are generally dry and open.

Cohesionless wet zones were encountered in several of the boreholes. If these cohesionless zones are penetrated, some seepage from these wet zones should be anticipated. However, these zones are likely of limited extent and are not horizontally continuous layers.

On this basis, seepage into excavations may be allowed to drain into the excavation and then controlled by a conventional sump pump arrangement. Nevertheless, delays in excavation will occur as the seepage is controlled and these delays should be anticipated in the construction schedule.

9.2 Raft Foundation Option

Prior to excavation for a raft foundation, positive dewatering to lower the groundwater table will be required to facilitate construction as well as to maintain the integrity of the subgrade for foundation and slab-on-grade support. The water level must be kept at least 1.2 m below the lowest excavation elevation during construction. Failure to dewater prior to excavation will result in unrecoverable disturbance of the subgrade, which will render advice provided for undisturbed subgrade conditions inapplicable.

A professional dewatering contractor must be consulted to review the subsurface conditions and to design a site-specific dewatering system. It is the dewatering contractor's responsibility to assess the factual data and to provide recommendations on dewatering system requirements.

Dewatering will take some time to accomplish prior to the start of excavation. Stored water within the excavation will need to be considered prior to excavation/dewatering.

10 Private Water Drainage System (PWDS)

If the proposed development consists of drained foundations, then a private water drainage system will be required. The total sub floor drain area will be approximately 14,892 m² based on the drawings which have been provided.

If the development is designed with a private water drainage system, the drainage system is a critical structural element since it keeps water pressure from acting on the basement walls and floor slab. As such, the sump that ensures the performance of this system must have a duplexed pump arrangement for 100% pumping redundancy and these pumps must be on emergency power. The size of the sump should be adequate to accommodate the estimated groundwater seepage. It is anticipated that the groundwater seepage can be controlled with typical, widely available, commercial/residential sump pumps.

11 Groundwater Extraction and Discharge

Numerical analyses were conducted for both short term and long term dewatering scenarios, by finite element modelling using the *Slide2* software package by Rocscience. The Finite Element Model (FEM) for groundwater seepage indicates the short term (construction) and long term (permanent) dewatering requirements as provided below. The finite element model results are presented in Appendix F.

The groundwater seepage estimates provided below represent the steady state groundwater seepage. There will also be an initial drawdown of the groundwater before a steady state condition is reached. The rate of the initial drawdown, and therefore discharge, is dependent on the dewatering contractor and how the groundwater is being dealt with at the site.

An estimated initial volume of stored groundwater has been provided below, which will require removal before steady state is reached.

If the excavation is exposed to the elements, stormwater will have to be managed. The short-term control of groundwater should consider stormwater management from rainfall events. A dewatering system should be designed to consider the removal of rainfall from excavation. A design storm of 25 mm has been used in the quantity estimates.

As required by Ontario Regulation 63/16, a plan for discharge must consider the conveyance of stormwater from a 100-year storm. The additional volume that will be generated in the occurrence of a 100-year storm event is approximately 1,400,000 L.

The following design considerations and values have been incorporated into the numerical modelling:

• A Factor of Safety of 3.0 was used for all groundwater seepage volume calculations.

The design hydraulic conductivities for the site are:

Design Hydraulic Conductivity					
Stratum/Formation	K (m/s)				
Earth Fill	1.0 x 10 ⁻³				
Sand and Silt, Clayey Till	9.1 x 10 ⁻⁷				
Sand	9.6 x 10 ⁻⁶				
Bedrock	1.0 x 10 ⁻⁸				

Stored Groundwat	Stored Groundwater (pre-excavation/dewatering)					
Foundation	Volume of Excavation (m³)	Volume of Excavation Below Water Table (m ³)	Estimated Volume of Stored Groundwater		Estimated Volume of Available Groundwater	
Οριιοπ			m ³	L	m ³	L
Raft	58,079	0	3,600	3,600,000	2,700	2,700,000
Pile Caps & Grade Beams/ Spread Footings	58,079	0	-	-	-	-

The quantity estimates for both short- and long-term conditions are presented below and in the appendices.

Short Term (Construction) Steady State Groundwater Quantity						
Foundation Option	Estimated Groundwater Seepage		Design Rainfall Event (25mm)		Estimated Total Daily Water Takings	
	L/day	L/min	L/day	L/min	L/day	L/min
Raft	1,265,000	878.5	373,000	259.0	1,638,000	1,137.5
Pile Caps & Grade Beams/ Spread Footings	5,000	3.5	373,000	259.0	378,000	262.5

Long Term (Permanent) Steady State Groundwater Quantity					
Estimated Groundwater Seepage		Estimated Infiltrated Stormwater – Design Rainfall Event (25mm)		Estimated Total Daily Water Takings	
L/day	L/min	L/day	L/min	L/day	L/min
-	-	20,000*	13.9	20,000*	13.9*

*This long term total daily water takings applies to both foundation options.

Regulatory Requirements	Raft Foundation	Pile Caps & Grade Beams/ Spread Footings
Environmental Activity and Sector Registry (EASR) Posting	N/A	Not Required
Short Term Permit to Take Water (PTTW)	Required	Not Required
Long Term Permit to Take Water (PTTW)	Not Required	Not Required

Regulatory Requirements	Raft Foundation	Pile Caps & Grade Beams/ Spread Footings
Short Term Discharge Agreement City of Pickering	Required	Not Required
Long Term Discharge Agreement City of Pickering	N/A	N/A

The City of Pickering/Durham Region will require Discharge Agreements in the short term, if any water is to be discharged to the storm or sanitary sewers.

Please note:

- The proposed pump schedule for short term construction dewatering has not been completed. As such, the actual peak short term discharge rate is not available at the time of writing this report. The pump schedule must be specified by either the dewatering contractor retained or the mechanical consultant.
- The proposed pump schedule for long term permanent drainage has not been completed. As such the actual peak long term discharge rate is not available at the time writing of this report. The pump schedule must be specified by the mechanical consultant.
- If an emergency repair connection is proposed, the pump schedule for this connection has not been completed. The actual emergency discharge rate is not available at the time writing of this report. The pump schedule must be specified by the mechanical consultant.
- On-site containment (infiltration gallery/dry well etc.) has not been considered as part of the proposed development at this time. If this option is considered, additional work will have to be conducted (i.e. infiltration testing).

12 Evaluation of Impact

12.1 Zone of Influence

Localized dewatering of an aquifer produces a cone-shaped depression in the groundwater table that extends some distance away from the dewatering point. The lateral distance which the cone of depression extends (i.e., the distance to where drawdown is effectively zero) is known as the Zone of Influence (ZOI).

The ZOI was calculated using the Sichardt equation below.

$R_0 = 3000 (\Delta H) \sqrt{K}$

ΔН	=	dewatering thickness (m)
Κ	=	hydraulic conductivity (m/s)
R₀	=	radius of influence (m)

The ZOI with respect to groundwater seepage at the site is summarized as follows.

Zone of Influence (ZOI)		
	Short Term (Construction), m	Long Term (Permanent), m
Raft - Pile and Lagging Scenario	3	0
Pile Caps & Grade Beams/ Spread	0	0
Footings - Pile and Lagging Scenario	0	0

12.2 Land Stability

The impacts to land stability on adjacent structures due to the proposed short- and long-term dewatering at the site are summarized as follows:

Land Stability					
	Short Term (Raft Construction)	Short Term (Pile Caps & Grade Beams/ Spread Footings Construction)	Long Term (Permanent)		
Dewatering Thickness (m)	1.2	0	0		
Increase in Effective Stress (kPa)	12	0	0		
Maximum Theoretical Settlement due to Dewatering (mm)	<2	0	0		
Public Realm Theoretical Settlement due to Dewatering (mm)	<2	0	0		

The maximum induced settlement (estimated) occurs directly adjacent to the proposed excavation and decreases in a nonlinear fashion with distance away from the excavation.

On this basis, the impact of the proposed dewatering on the existing adjacent structures is considered by Grounded to be within acceptable limits.

12.3 City's Sewage Works

Negative impacts to City's sewage works may occur in terms of the quantity or quality of the groundwater discharged. This report provided the estimated quantity of the water discharge. However, this report does not speak to the sewer capacities. The sewer capacity analysis is provided under a separate cover by the civil consultant.

The quality of the proposed groundwater discharge is provided in Section 7. As noted in that section, the groundwater sample exceeded the Limits for Storm Sewer Discharge and met the Limits for Sanitary and Combined Sewer Discharge.

As such, treatment will be required before the collected groundwater can be discharged to the Storm Sewer to avoid impacts to the City's sewage works caused by groundwater quality. Treatment will not be required before the collected groundwater can be discharged to the Sanitary and Combined Sewer.

12.4 Natural Environment

There are no natural waterbodies within the ZOI that will be affected by the proposed construction dewatering or permanent drainage. Any groundwater which will be taken from the site will be discharged (if required) into the City's sewer systems and not into any natural waterbody. As such, there will be no impact to the natural environment caused by the water takings at the site.

12.5 Local Drinking Water Wells

The site is located within the municipal boundaries of the City of Pickering. The site and surrounding area are provided with municipal piped water and sewer supply. There is no use of the groundwater for water supply in this area of Pickering. As such, there will be no impact to drinking water wells.

12.6 Contamination Source

The site and immediately surrounding area currently consist mostly of residential and commercial areas. These land uses are not anticipated to be a source of potential contamination and are not expected to provide an Area of Potential Environmental Concern for the site. As such, the pumping of groundwater at the site is not anticipated to facilitate the movement of potential contaminants onto the site. Evaluation of the environmental condition of the site has been completed under a separate cover.

13 Proposed Mitigation Measures and Monitoring Plan

As a result of dewatering and draining the soil, changes in groundwater level have the potential to cause settlement based on the change in the effective stresses within the ZOI. The extent of the negative impact identified in previous sections will be limited to the ZOI caused by the groundwater taking at the site.

Both the temporary construction dewatering system and the permanent building drainage system must be properly installed and screened to ensure sediments and fines will not be removed, which is typically a primary cause of dewatering related settlement.

14 Limitations

Natural occurrences, the passage of time, local construction, and other human activity all have the potential to directly or indirectly alter the subsurface conditions at or near the project site. Contractual obligations related to groundwater or stormwater control must be considered with attention and care as they relate this potential site alteration.

The hydrogeological engineering advice provided in this report is based on the factual observations made from the site investigations as reported. It is intended for use by the owner

and their retained design team. If there are changes to the features of the development or to the scope, the interpreted subsurface information, geotechnical engineering design parameters, advice, and discussion on construction considerations may not be relevant or complete for the project. Grounded should be retained to review the implications of such changes with respect to the contents of this report.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Grounded accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

The authorized users of this report are 1095 Kingston Road Limited and their design team, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc. The City of Toronto may also make use of and rely upon this report, subject to the limitations as stated.

15 Closure

If there are any questions regarding the discussion and advice provided, please do not hesitate to contact our office. We trust that this report meets your requirements at present.

For and on behalf of our team,

Matt Bielaski, P.Eng. QP RA-ESA Principal

2025-04-08

	GROUNDED
	ENGINEERING
	1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3 www.groundedeng.ca
	LEGEND
	APPROXIMATE PROPERTY BOUNDARY
	STUDY AREA (250 m RADIUS)
	Note
	Reference
	ArcGIS Online, 2025
	Drojost
	Project
	1095 KINGSTON ROAD PICKERING, ONTARIO
	, -
Daladaa	
Park	AND STUDY AREA MAP
	North
	TRUE
	Date
	MARCH 2025
	AS INDICATED
	Job No
	22-279
	Figure No

30m 0m 15m

22-279

FIGURE 2

Figure No

22-279 Figure No

FIGURE 3

APPENDIX A

SAMPLING/TESTING METHODS	SYMBOLS & ABBREVIATIONS	ENVIRONMENTAL SAMPLES
SS: split spoon sample	MC: moisture content	M&I: metals and inorganic parameters
SS. spiit spoon sample	LL: liquid limit	PAH: polycyclic aromatic hydrocarbon
AS: auger sample	PL: plastic limit	PCB: polychlorinated biphenyl
GS: grab sample	NP: non-plastic	VOC: volatile organic compound
FV: shear vane	γ: soil unit weight (bulk)	PHC: petroleum hydrocarbon
DP: direct push	G _s : specific gravity	BTEX: benzene, toluene, ethylbenzene and xylene
	S _u : undrained shear strength	PPM: parts per million
PMT: pressuremeter test		
ST: shelby tube	1st water level measurement	
CORE: soil coring	${oldsymbol {\mathbb Y}}$ 2nd water level measurement most recent	
RUN: rock coring	▼ water level measurement	

FIELD MOISTURE (based on tactile inspection)

DRY: no observable pore water

MOIST: inferred pore water, not observable (i.e. grey, cool, etc.) **WET:** visible pore water

COMPOSITION

Term	% by weight
<i>trace</i> silt	<10
some silt	10 - 20
silt y	20 - 35
sand and silt	>35

ASTM STANDARDS

ASTM D1586 Standard Penetration Test (SPT)

Driving a 51 mm O.D. split-barrel sampler ("split spoon") into soil with a 63.5 kg weight free falling 760 mm. The blows required to drive the split spoon 300 mm ("bpf") after an initial penetration of 150 mm is referred to as the N-Value.

ASTM D3441 Cone Penetration Test (CPT)

Pushing an internal still rod with a outer hollow rod ("sleeve") tipped with a cone with an apex angle of 60° and a cross-sectional area of 1000 mm^2 into soil. The resistance is measured in the sleeve and at the tip to determine the skin friction and the tip resistance.

ASTM D2573 Field Vane Test (FVT)

Pushing a four blade vane into soil and rotating it from the surface to determine the torque required to shear a cylindrical surface with the vane. The torque is converted to the shear strength of the soil using a limit equilibrium analysis.

ASTM D1587 Shelby Tubes (ST)

Pushing a thin-walled metal tube into the in-situ soil at the bottom of a borehole, removing the tube and sealing the ends to prevent soil movement or changes in moisture content for the purposes of extracting a relatively undisturbed sample.

ASTM D4719 Pressuremeter Test (PMT)

Place an inflatable cylindrical probe into a pre-drilled hole and expanding it while measuring the change in volume and pressure in the probe. It is inflated under either equal pressure increments or equal volume increments. This provides the stress-strain response of the soil.

COHESIONLESSRelative DensityN-ValueVery Loose<4</td>Loose4 - 10Compact10 - 30

Loose	4 - 10
Compact	10 - 30
Dense	30 - 50
Very Dense	>50

N-Value	Su (kPa)
<2	<12
2 - 4	12 - 25
4 - 8	25 - 50
8 - 15	50 - 100
15 - 30	100 - 200
>30	>200
	N-Value <2 2 - 4 4 - 8 8 - 15 15 - 30 >30

ED

ND)

WELL LEGEND

ROCK CORE TERMINOLOGY (MTO SHALE)

TCR Total Core Recovery the total length of recovery (soil or rock) per run, as a percentage of the drilled length

- SCR Solid Core Recovery the total length of sound full-diameter rock core pieces per run, as a percentage of the drilled length
- **RQD** Rock Quality Designation the sum of all pieces of sound rock core in a run which are 10 cm or greater in length, as a percentage of the drilled length

Natural Fracture Frequency (typically per 0.3 m) The number of natural discontinuities (joints, faults, etc.) which are present per 0.3m. Ignores mechanical or drill-induced breaks, and closed discontinuities (e.g. bedding planes).

LOGGING DISCONTINUITIES

Spacing in Discontinuity Sets Discontinuity Type Roughness (Barton et al.) (ISRM 1981) **BP** bedding parting vc very close < 60 mm CL cleavage 5 cm 60 - 200 mm С close CS crushed seam М mod. close 0.2 to 0.6 m VR Very rough F7 fracture zone 0.6 to 2 m JRC = 16 - 18 W wide MB mechanical break very wide VW > 2 m IS infilled seam JRC = 18 - 20 JT Joint R Rough SS shear surface JRC = 12 - 14 **Aperture Size** SZ shear zone JRC = 14 - 16 VN vein т closed / tight < 0.5 mm vo void s Smooth **GA** gapped 0.5 to 10 mm **OP** open *JRC* = 4 - 6 > 10 mm Coating CN Clean JRC = 6 - 8 Planarity SN Stained SL Slickensided PR Planar ОХ Oxidized (visually assessed) UN Undulating VN Veneer POL Polished ST Stepped Coating (>1 mm) СТ JRC = 0 - 2 IR Irregular DIS Discontinuous **Dip Inclination** JRC = 2 - 4 CU Curved horizontal/flat 0-20° н 20 - 50° D dipping

~ -		-	
GE	NE	.R/	٩L

sub-vertical

vertical

SV

ν

Degree of Weathering (after MTO, RR229 Evaluation of Shales for Construction Projects)

Degree	Description
unweathered	shale, regular jointing
	angular blocks of unweathered shale, no matrix, with chemically weathered but intact shale
partially weathered	soil-like matrix with frequent angular shale fragments < 25mm diameter
	soil-like matrix with occasional shale fragments < 3mm diameter
fully weathered	soil-like matrix only
	Degree unweathered partially weathered fully weathered

Strength classification (after Marinos and Hoek, 2001; ISRM 1981b)

50 - 90°

90±°

Grade		UCS (MPa)	Field Estimate (Description)	V013,
R6	extremely strong	> 250	can only be chipped by geological hammer	Very t
R5	very strong	100 - 250	requires many blows from geological hammer	Thick
R4	strong	50 - 100	requires more than one blow from geological hammer	Mediu
R3	medium strong	25 - 50	can't be scraped, breaks under one blow from geological hammer	Thinly Verv t
R2	weak	5 - 25	can be peeled / scraped with knife with difficulty	Lamin
R1	very weak	1 - 5	easily scraped / peeled, crumbles under firm blow of geo. hammer	Thinly
R0	extremely weak	< 1	indented by thumbnail	

Bedding Thickness (Q. J. Eng. Geology, Vol 3, 1970)

Very thickly bedded	> 2 m
Thickly bedded	0.6 – 2m
Medium bedded	200 - 600mm
Thinly bedded	60 – 200mm
Very thinly bedded	20 – 60mm
Laminated	6 – 20mm
Thinly Laminated	< 6mm

Date Started : Nov 17, 2022 Position : E: 652908, N: 4854420 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 1

File	No.	: 22-279						Proj	ect : 1095 Kingston F	Rd., Pickering Clie	ent : Plaza Partners
		stratigraphy		samp	oles	Ē			undrained shear strength (kPa) ■ unconfined + field vane	headspace vapour (ppm) X hexane □ isobutylene	lab data
					٩	ale (i	ails	(L)	pocket penetrometer O Lab Vane 40 80 120 160	△ methane 100 200 300	and ≝ comments
: poul :	<u>elev</u> depth	description	c log		-valu	th sc	det	atior	SPT N-values (bpf)	moisture / plasticity	te arain size
II met AE 55	(m)		aphi umbe	be	PT N	dept	we	elev	X dynamic cone		distribution (%) (MIT)
<u>55</u>	87.4	GROUND SURFACE	5 E	÷ ÷	S	0-			10 20 30 40	10 20 30	GR SA SI CL
T	-	FILL clavey silt sandy some gravel trace	1	SS	18	-		-87			
		rock fragments, trace construction debris,	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	-		1					<u>SS1:</u> H-Ms, Metals, ORPs 18 23 32 27
gers-		stiff to stiff, brown, moist	₩_2	SS	14			96			SS2: PAHs
5 mm	-	at 0.8 m, light grey silt partings	▓		10	- 1		- 00			
w ste D=21	-		×		13	2-		-			
-hollc	-	at 2.3 m, trace orange staining, trace		SS	7	1.		- 85			
	84.4		▓			3-		_			SS4: BTEX, H-Ms, Metals, ORPs, PAHs, PHCs, VOCs
	3.0	SAND AND SILT, some clay, trace rock	o 5	SS	17	Ŭ		- 84			
╁	-	moist				-		0.			
	-	(GLACIAL TILL)	e			4 -		-			
	82.8		44		_	-		-83			-
	- 4.0	SANDY SILT , clayey, trace gravel, compact, grey, moist	6	SS	27	5 -		-		x o	
		(GLACIAL TILL)				1		- 82			
			•								
	-					6-		_			
	-			SS	26	-		- 81			
	-					7 -					
	_		•					- 80			
		at 7.6 m, dense		22	31			-			
	_		٩Ľ	00		- 8-					
	-					-		- 79			-
	78.3					9 -		-			
ary Ig	9.1	SAND AND SILT, trace clay, trace gravel,	9	SS	64			- 78		x 0	
id rot		very dense, grey, wet				10-					
дд Г						10-					
	-				-	-					5 49 39 7
	-		10) SS	53	11 -					SS10: BTEX, PHCs, VOCs
	-					- 1		- 76			
	_					12 -	「目の				
		at 12.2 m, trace rock fragments, compact		1 00	20			-75			
	_			1 55	29		1 目				
	-					13 -					
	73.7					-		-74			-
	13.7	SAND, trace silt, trace gravel, trace rock	12	2 SS	96	14 -		-			
	_	dense, grey, wet			-	- I	-	-73			
								_			14.6m: Auger grinding (1 min)
	72.2	() 	77 17	22 45	4 100 /	15 -	-				15.2m: Auger grinding
	71.7	INFERRED BEDROCK		5/ 33	75mm	-	-	-72			(10min) to 15.7m
	15.7		14	<u>1) SS</u>	50mm					°	15.7m: Auger refusal
		Refusal on inferred bedrock						da	te <u>depth (m)</u>	_S elevation (m)	
								Nov 23 Jan 12	3, 2022 5.3 . 2024 5.0	82.1 82.4	
		Borehole was filled with drill water upon						Jan 16	, 2024 4.9	82.5	
		50 mpiction of anning.						reb 3,	2023 5.3	02.1	
		50 mm dia. monitoring well installed. No. 10 screen									

Date Started : Nov 16, 2022 Position : E: 652819, N: 4854413 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 2

File	e No.	: 22-279						Proj	ect : 109	5 Kingston F	Rd., Pickering Cli	ent : Plaza Partners
		stratigraphy		samp	les	(L)			undrained she	ear strength (kPa) + field vane	headspace vapour (ppm) × hexane	lab data
method : : 55	<u>elev</u> depth (m)	description	phic log nber	υ	T N-value	epth scale (vell details	levation (m	pocket penetro 40 8 SPT N-values X dynamic con	(bpf)	C methane 100 200 300 moisture / plasticity PL MC LL	palaa iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
drill	87.7	GROUND SURFACE	gra nur	typ	SP.	0-	>	ø	10 2	0 30 40	10 20 30	(MII) GR SA SI CL
	_	150mm ASPHALT	1	SS	14	1.		-			k o	10 11 49 30
	_	grey silt partings, stiff to hard, brownish grey,		22	21	1-		- 87				SS1: H-Ms, Metals, ORPs
augers	_	moist			51	- 1		-				<u>SS2:</u> BTEX, PAHs, PHCs, VOCs
llow stem			3	SS	39	2-		- 86 -				<u>SS3:</u> H-Ms, Metals, ORPs, PAHs
oh		at 2.0 m trace cond	4	SS	38	- 3-		- 85				
		at 5.0 m, trace sand	5	SS	46	-		-			K O	0 1 67 32
	- 83.1					4 -		- 64				
	4.6	SAND AND SILT, clayey, trace gravel, dense to very dense, grey, moist (GLACIAL TILL)	6	SS	70	5-		83 			1 3 O	<u>SS6:</u> PHCs
	-					6-		- 82				
	-		o 7	SS	70	-		-				
	-					7-		- 81				
			8	SS	46	8-		- 80 -			R O	-
I to tary	-					-		79				
	-	at 9.1 m, sandy silt, clayey, trace rock fragments	9	SS	31	-		- 78				4 33 42 21 <u>SS9:</u> BTEX, PHCs, VOCs
			0			10						
	10.7	SILTY SAND, trace clay, trace gravel, dense, grey, wet		SS	30	11-		- 77 				-
	-					- 12-		- 76				
	75.5	INFERRED BEDROCK, shale fragments	111	SS	50 / 75mm	- 12						12.2m: auger grinding
	-					13 -	-	- 75				-
	74.0		\mathbb{X}_{12}	22 4	4 100 /		-	- 74	10.7 (El	74.0 m)	B O	13.6 m: spoon bouncing
	13.7	WHITBY FORMATION (See rock core log for details)			75mm	14 -		_	transition t	to sound bedrock		
	-		1	RUN		45		- 73				-
						15 -		-				
-(DH)			2	RUN		16 -		-72				
coring	- 12					-		-				
- rock	, – I		=			17 -		-71				-
	-		3	RUN		-		- 70				
	-					18 -		_ /0				ő
V	68.9		4	RUN		-		- 69				
	18.8	END OF BOREHOLE						da	GROUN	IDWATER LEVE	LS elevation (m)	
jint.gpj		Borehole was filled with drill water upon completion of drilling.						Nov 23 Jan 12 Jan 16	3, 2022 , 2024 , 2024	5.8 5.3 5.4	81.9 82.4 82.3	
e: 22-279 (50 mm dia. monitoring well installed. No. 10 screen						Feb 3,	2025	5.8	81.9	
ĕ∟												

Date Started : Nov 16, 2022 Position : E: 652819, N: 4854413 (UTM 17T) Elev. Datum : Geodetic

ROCK CORE LOG 2

Fil	e No.	: 22-279				I	Project : 1	095 Kin	gston Rd., Pick	ering Client : Plaza Partner	rs
depth (m)	graphic log	stratigraphy Rock coring started at 13.7m below grade	elev depth (m)	recovery	elevation (m)	shale weathering zones	UCS (MPa)	natural fracture frequency	laboratory testing	notes and comments	elevation (m)
- - 14		WHITBY FORMATION Shale, black, thinly bedded to medium bedded, weak to medium strong; joints are horizontal, closed, clean;	13.7		-			1	_	14.1 / 73.5 - 14.2 / 73.5m: IS clay	-
F			R1	TCR = 100%	-		•		El. 73.4m: UCS = 14.7 MPa	,	-
ŀ		rock		RQD = 56%	73 -			3	r = 4.20 Gra r = 25.5 kN/m ³	14.6 / 73.1 - 14.7 / 73.0m: IS clay 14.7 / 73.0 - 14.7 / 73.0m: FC SV	'3-
- 15 -			72.5		-			1+RZ		15.0 / 72.7 - 15.1 / 72.6m: Rubbilized zone 15.1 / 72.6 - 15.1 / 72.6m: IS clay	-
- - -16			R2	TCR = 100% SCR = 91% RQD = 66%	- 72 -			1 2 1		7 16.0 / 71.7 - 16.1 / 71.6m: clay seam	'2- - -
-			71.0 16.7		- 71 -			0	-	7	- - 11-
- 17 - - - - 18			R3	TCR = 99% SCR = 99% RQD = 87%	- - 70			1 1 2 0		7 17.8 / 69.9 - 17.8 / 69.9m: IS clay	
-			69.6 18.1 R4 68.9 18.8m	TCR = 100% SCR = 100% RQD = 100%	69 -			0	-	6	- - ;9 -

END OF COREHOLE

file: 22-279 gint.gpj

Date Started : Nov 14, 2022 Position : E: 652872, N: 4854527 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 3

File	No.	: 22-279					Proje	ect : 1095 Kingston F	Rd., Pickering Cli e	ent : Plaza Partners
		stratigraphy		samples	Ē			undrained shear strength (kPa) ■ unconfined + field vane	headspace vapour (ppm)	lab data
				e e	ale (r	tails	E) C	pocket penetrometer O Lab Vane 40 80 120 160	△ methane 100 200 300	be and and and and and and and and a second
ethod 5	elev depth	description	lic loc	V-valt	oth sc	ll de	vation	SPT N-values (bpf)	moisture / plasticity	Grain size
Irill me	00 5		graph	type SPT I	dep	× Ke	ele	X dynamic cone		distribution (%) (MIT)
	00.5	150mm ASPHALT	~ _ XX		0-					GR SA SI
	-	FILL, clayey silt, sandy, some gravel, trace	1	SS 10			- 88			SS1: H-Ms, Metals, ORPs
gers -	87.4 1.1	at 0.8 m, sandy silt, compact	2	SS 19	1-		-		nx o	SS2: BTEX, PAHs, PHCs,
em au 15 mn	-	SAND AND SILT, clayey, trace gravel, orange staining, dense to very dense, grey,	3	SS 61			- 87			VOCs
low st OD=2	-	(GLACIAL TILL)			2-		-			SS3: H-Ms, Metals, ORPs
lod	_	at 2.3 m, no staining	4	SS 44	-		- 86			<u>SS4:</u> PAHs
	_		¢ 5	SS 48	3-		-			
X	-				-		- 85			
	_		•		4-		-			
	_		6	SS 86			- 84		nx o	
	-				- 5-					
	-		•		-		- 83			
	_		7	SS 50 /	6-		- 00			
	_		0	123111	י <u>י</u>	_	- 82			
	_				/-		- 01			
			8	SS 36			-01			
					- 8-		- 80			
			o				_ 00			
	79.1	at 9.1 m, sandy	9A	SS 54	9-		- 70			
	9.4	SAND, some silt, trace clay, trace gravel,	9B	SS	10-		-			SSEA, BTEX, FRUS, VOUS
					10-		- 78			
			10	SS 52	11_		-			
stary lo				00 02			- 77			
D=13	_				12 -					
Ī	_		11	SS 56	1.		∴76			2 84 11
	_	la de la companya de	\vdash		13-		<u>.</u>			
	_				_		- 75			
	_	at 13.7 m, some gravel	12	SS 92	14 -) -			
	_		-				-74			_
	_				15 -					
	_	at 15.2 m, trace shale fragments	13	SS 50 /			: 73		nx o	
	_			1.0011	16-	_	-			
	71 7				-	-	- 72			_
	16.8	CLAYEY SILT, some sand, trace gravel,	<u>8 14</u>	SS 50 /	17-	-	-		ux o	16.8m: Auger refusal
	_	trace shale fragments, hard, grey, moist			- 12	-	-71			
	70 2				18 -	-	-			17.7m: Auger grinding (15min) to 18.3m
	18.3	INFERRED BEDROCK	15	SS 65 /		-	- 70		0	18.3m: Auger grinding (20min) to 19.3m
	-		γ		19 -	-	-			
	69.1 19.4		√ <u>16</u>	<u>SS</u> 80 / 75mn					0	19.3m: Auger refusal
		END OF BOREHOLE Refusal on inferred bedrock		<u>, , , , , , , , , , , , , , , , , , , </u>	-		dat	GROUNDWATER LEVE	LS elevation (m)	
							Nov 30, Jan 12	, 2022 6.5 2024 6.2	82.0 82.3	
		Borehole was filled with drill water upon completion of drilling					Jan 16, Feb 3 3	2024 6.2 2505 6.5	82.3 82.0	
		50 mm dia monitoring well installed					1 00 0, 2	0.0	02.0	
		No. 10 screen								

Page 1 of 1

APPENDIX B

ile: 22-279 gint.gpj

file: 22-279 gint.gpj

APPENDIX C

Slug Test Analysis ReportProject:1095 Kingston Rd.Number:22-279

_..

	Client: Plaza Partn	ers
Location: Pickering, ON	Slug Test: BH1	Test Well: BH1
Test Conducted by: MC		Test Date: 2022-11-23
Analysis Performed by: SB	BH1	Analysis Date: 2022-11-30
Aquifer Thickness: 15.24 m		

Calculation using Bouwer & Rid	ce	
Observation Well	Hydraulic Conductivity	
	[m/s]	
BH1	5.43 × 10 ⁻⁵	

Slug Test Analysis Report Project: 1095 Kingston Rd. Number: 22-279

Calculation using Bouwer & Rid	ce	
Observation Well	Hydraulic Conductivity	
	[m/s]	
BH2	9.09 × 10 ⁻⁷	

Slug Test Analysis Report Project: 1095 Kingston Rd. Number: 22-279

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH3	9.61 × 10 ⁻⁵	

APPENDIX D

Hydrogeo	K from Grain Size Analysis Report	:	D	ate:	21-Nov-22	
XL	Sample Name:		BH 1 SS10			
STEVE	Mass Sample (g):	347.51		T (oC)	20	

Poorly sorted sand with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	8.7E-06	8.7E-08	0.01	
Hazen K (cm/s) = d ₁₀ (mm)	1.5E-05	1.5E-07	0.01	
Slichter	1.7E-06	1.7E-08	0.00	
Terzaghi	2.5E-06	2.5E-08	0.00	
Beyer	1.0E-05	1.0E-07	0.01	
Sauerbrei	1.5E-05	1.5E-07	0.01	
Kruger	1.2E-04	1.2E-06	0.10	
Kozeny-Carmen	3.9E-05	3.9E-07	0.03	
Zunker	3.0E-05	3.0E-07	0.03	
Zamarin	3.5E-05	3.5E-07	0.03	
USBR	2.9E-05	2.9E-07	0.03	
Barr	1.9E-06	1.9E-08	0.00	
Alyamani and Sen	1.7E-04	1.7E-06	0.14	
Chapuis	1.1E-07	1.1E-09	0.00	
Krumbein and Monk	1.5E-04	1.5E-06	0.13	
geometric mean	2.9E-05	2.9E-07	0.02	
arithmetic mean	8.3E-05	8.3E-07	0.07	

Poorly sorted sandy silt with fines

	-	-	-	-
Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	3.4E-07	3.4E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	5.9E-07	5.9E-09	0.00	
Slichter	6.6E-08	6.6E-10	0.00	
Terzaghi	9.4E-08	9.4E-10	0.00	
Beyer	2.6E-07	2.6E-09	0.00	
Sauerbrei	2.0E-07	2.0E-09	0.00	
Kruger	4.4E-05	4.4E-07	0.04	
Kozeny-Carmen	7.5E-06	7.5E-08	0.01	
Zunker	5.7E-06	5.7E-08	0.00	
Zamarin	6.7E-06	6.7E-08	0.01	
USBR	2.8E-07	2.8E-09	0.00	
Barr	7.1E-08	7.1E-10	0.00	
Alyamani and Sen	5.0E-05	5.0E-07	0.04	
Chapuis	1.1E-09	1.1E-11	0.00	
Krumbein and Monk	3.8E-05	3.8E-07	0.03	
geometric mean	8.9E-07	8.9E-09	0.00	
arithmetic mean	1.7E-05	1.7E-07	0.01	

Poorly sorted sandy silt with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	3.4E-07	3.4E-09	0.00	
Hazen K (cm/s) = d_{10} (mm)	6.0E-07	6.0E-09	0.00	
Slichter	6.7E-08	6.7E-10	0.00	
Terzaghi	9.5E-08	9.5E-10	0.00	
Beyer	2.3E-07	2.3E-09	0.00	
Sauerbrei	2.0E-07	2.0E-09	0.00	
Kruger	5.5E-05	5.5E-07	0.05	
Kozeny-Carmen	8.3E-06	8.3E-08	0.01	
Zunker	6.3E-06	6.3E-08	0.01	
Zamarin	7.4E-06	7.4E-08	0.01	
USBR	3.0E-07	3.0E-09	0.00	
Barr	7.2E-08	7.2E-10	0.00	
Alyamani and Sen	1.3E-04	1.3E-06	0.11	
Chapuis	1.1E-09	1.1E-11	0.00	
Krumbein and Monk	5.2E-05	5.2E-07	0.04	
geometric mean	1.2E-06	1.2E-08	0.00	
arithmetic mean	4.3E-05	4.3E-07	0.04	

Hydrogeo	K from Grain Size Analysis Report	t	Da	te:	21-Nov-22	
XL	Sample Name:	E	3H 3 SS11			
21012	Mass Sample (g):	290.81		T (oC)	20	

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.6E-03	1.6E-05	1.42	
Hazen K (cm/s) = d ₁₀ (mm)	1.5E-03	1.5E-05	1.26	
Slichter	4.5E-04	4.5E-06	0.39	
Terzaghi	7.7E-04	7.7E-06	0.67	
Beyer	1.5E-03	1.5E-05	1.28	
Sauerbrei	2.4E-03	2.4E-05	2.05	
Kruger	8.3E-04	8.3E-06	0.72	
Kozeny-Carmen	6.6E-04	6.6E-06	0.57	
Zunker	3.7E-04	3.7E-06	0.32	
Zamarin	4.4E-04	4.4E-06	0.38	
USBR	1.7E-03	1.7E-05	1.45	
Barr	5.8E-04	5.8E-06	0.50	
Alyamani and Sen	1.2E-04	1.2E-06	0.10	
Chapuis	3.5E-04	3.5E-06	0.30	
Krumbein and Monk	2.3E-03	2.3E-05	1.97	
geometric mean	7.8E-04	7.8E-06	0.67	
arithmetic mean	1.3E-03	1.3E-05	1.15	

APPENDIX E

CA40286-NOV22 R1

22-279, 1095 Kingston Rd. Pickering

Prepared for

Grounded Engineering Inc.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Grounded Engineering Inc.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	1 Banigan Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Toronto, Ontario		
	M4H1G3. Canada		
Contact	Vivi Tran	Telephone	705-652-2143
Telephone	647-264-7928	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	vtran@groundedeng.ca	SGS Reference	CA40286-NOV22
Project	22-279, 1095 Kingston Rd. Pickering	Received	11/23/2022
Order Number		Approved	11/30/2022
Samples	Ground Water (1)	Report Number	CA40286-NOV22 R1
		Date Reported	11/30/2022

COMMENTS

RL - SGS Reporting Limit

Nonylphenol Ethoxylates is the sum of nonylphenol monoethoxylate and nonylphenol diethoxylate.

Total PAH is the sum of anthracene, benzo(a)pyrene, benzo(a)anthracene, benzo(e)pyrene, benzo(b,j)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenzo(a,h)anthracene, dibenzo(a,i)pyrene, dibenzo(a,j)acridine, 7H-dibenzo(c,g)carbazole, fluoranthene, indeno(1,2,3-c,d)pyrene, perylene, phenanthrene and pyrene.

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 030196

SIGNATORIES

TABLE OF CONTENTS

First Page	1
ndex	2
Results	. 3-6
Exceedance Summary	7
QC Summary	8-16
_egend	17
Annexes	18

Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd. Pickering

Project Manager: Vivi Tran

			s	Sample Number	8
			_	Sample Name	SW-uf-BH3
1 = SANSEW / WATER / Durham Sower Lee Bul aw - Society Sc	ewer Discharge	BI 55 2013		Sample Matrix	Ground Water
2 = SANSEW / WATER / Durham Sewer Use ByLaw - Samilary Se	ver Discharge - BL	. 55 2013		Sample Date	23/11/2022
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Suspended Solids	mg/L	2	350	15	34
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	< 0.5
Metals and Inorganics		1		I	
Sulphate	mg/L	2	1500		39
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Fluoride	mg/L	0.06	10		0.55
Aluminum (total)	mg/L	0.001	50		0.564
Antimony (total)	mg/L	0.0009	5		0.0011
Arsenic (total)	mg/L	0.0002	1	0.02	0.0008
Cadmium (total)	mg/L	0.000003	0.7	0.008	0.000025
Chromium (total)	mg/L	0.00008	2	0.08	0.00114
Cobalt (total)	mg/L	0.000004	5		0.000241
Copper (total)	mg/L	0.0002	3	0.05	0.0014
Lead (total)	mg/L	0.00009	1	0.12	0.00055
Manganese (total)	mg/L	0.00001	5	0.15	0.0428
Molybdenum (total)	mg/L	0.00004	5		0.00443
Nickel (total)	mg/L	0.0001	2	0.08	0.0009
Phosphorus (total)	mg/L	0.003	10	0.4	0.055
Selenium (total)	mg/L	0.00004	1	0.02	0.00042
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005
Tin (total)	mg/L	0.00006	5		0.00528

Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd. Pickering

Project Manager: Vivi Tran

MATRIX: WATER			5	Sample Number	8
				Sample Name	SW-uf-BH3
L1 = SANSEW / WATER / Durham Sewer Use ByLaw - Sanitary	y Sewer Discharge - B	BL_55_2013		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Durham Sewer Use ByLaw - Storm S	Sewer Discharge - BL_	_55_2013		Sample Date	23/11/2022
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Titanium (total)	mg/L	0.00005	5		0.0128
Zinc (total)	mg/L	0.002	2	0.04	0.003
Microbiology					
E. Coli	cfu/100mL	0		200	0
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
Oil and Grease					
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd. Pickering

Project Manager: Vivi Tran

				ample Number	8
MATRIX: WATER			3		
				Sample Name	SW-ut-BH3
L1 = SANSEW / WATER / Durham Sewer Use ByLaw - Sanitary	y Sewer Discharge - BL	55_2013		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Durham Sewer Use ByLaw - Storm S	Sewer Discharge - BL_5	55_2013		Sample Date	23/11/2022
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
рН	No unit	0.05	10.5	9	8.01
Mercury (total)	mg/L	0.00001	0.01	0.004	< 0.00001
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
Phenols					
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002
SVOCs					
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
VOCs					
Chloroform	mg/L	0.0005	0.04	0.002	0.0062
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005			< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8		< 0.02
Styrene	mg/L	0.0005	0.2		< 0.0005

Client: Grounded Engineering Inc.

Project: 22-279, 1095 Kingston Rd. Pickering

Project Manager: Vivi Tran

MATRIX: WATER			8	Sample Number	8
				Sample Name	SW-uf-BH3
L1 = SANSEW / WATER / Durham Sewer Use ByLaw	- Sanitary Sewer Discharge - BL	_55_2013		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Durham Sewer Use ByLaw	- Storm Sewer Discharge - BL_5	5_2013		Sample Date	23/11/2022
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

					SANSEW / WATER / Durham Sewer	SANSEW / WATER / Durham Sewer
					Use ByLaw -	Use ByLaw - Storm
					Sanitary Sewer	Sewer Discharge -
					Discharge -	BL_55_2013
					BL_55_2013	
	Parameter	Method	Units	Result	L1	L2
sw	-uf-BH3					
	Chloroform	EPA 5030B/8260C	mg/L	0.0062		0.002
	Total Suspended Solids	SM 2540D	mg/L	34		15

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	RPD AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5119-NOV22	mg/L	2	<2	ND	20	108	80	120	112	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	ry Limits
						(%)	Pecovery	(%)		Recovery	(%)	
						(76)	(%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0042-NOV22	mg/L	2	< 2	3	30	101	70	130	NV	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery	(%	6)	Recovery		6)
						(70)	(%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0254-NOV22	mg/L	0.01	<0.01	ND	10	105	90	110	88	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	RPD AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0558-NOV22	mg/L	0.06	<0.06	0	10	97	90	110	98	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits	
						(%)	Recovery	(%	»)	Recovery	(%	6)	
						(70)	(%)	Low	High	(%)	Low	High	
Mercury (total)	EHG0061-NOV22	mg/L	0.00001	< 0.00001	0	20	101	80	120	124	70	130	

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	ıtrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover	y Limits ၈)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0238-NOV22	mg/L	0.00005	<0.00005	ND	20	102	90	110	86	70	130
Aluminum (total)	EMS0238-NOV22	mg/L	0.001	<0.001	1	20	104	90	110	106	70	130
Arsenic (total)	EMS0238-NOV22	mg/L	0.0002	<0.0002	ND	20	103	90	110	98	70	130
Cadmium (total)	EMS0238-NOV22	mg/L	0.000003	<0.000003	ND	20	102	90	110	92	70	130
Cobalt (total)	EMS0238-NOV22	mg/L	0.000004	<0.000004	10	20	103	90	110	93	70	130
Chromium (total)	EMS0238-NOV22	mg/L	0.00008	<0.00008	ND	20	106	90	110	106	70	130
Copper (total)	EMS0238-NOV22	mg/L	0.0002	<0.0002	8	20	105	90	110	79	70	130
Manganese (total)	EMS0238-NOV22	mg/L	0.00001	<0.00001	4	20	103	90	110	75	70	130
Molybdenum (total)	EMS0238-NOV22	mg/L	0.00004	<0.00004	ND	20	97	90	110	99	70	130
Nickel (total)	EMS0238-NOV22	mg/L	0.0001	<0.0001	6	20	102	90	110	91	70	130
Lead (total)	EMS0238-NOV22	mg/L	0.00009	<0.00001	ND	20	103	90	110	105	70	130
Phosphorus (total)	EMS0238-NOV22	mg/L	0.003	<0.003	18	20	98	90	110	NV	70	130
Antimony (total)	EMS0238-NOV22	mg/L	0.0009	<0.0009	3	20	103	90	110	128	70	130
Selenium (total)	EMS0238-NOV22	mg/L	0.00004	<0.00004	ND	20	104	90	110	75	70	130
Tin (total)	EMS0238-NOV22	mg/L	0.00006	<0.00006	ND	20	96	90	110	NV	70	130
Titanium (total)	EMS0238-NOV22	mg/L	0.00005	<0.00005	10	20	101	90	110	NV	70	130
Zinc (total)	EMS0238-NOV22	mg/L	0.002	<0.002	ND	20	108	90	110	93	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		M	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(70)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9415-NOV22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recovery (%)	Limits
						(70)	(%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0505-NOV22	mg/L	0.01	<0.01			91	55	120			
Nonylphenol Ethoxylates	GCM0505-NOV22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0505-NOV22	mg/L	0.01	<0.01			90	55	120			
Nonylphenol	GCM0505-NOV22	mg/L	0.001	<0.001			92	55	120			

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD) AC (%)	Spike	Spike Recovery Limits		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0514-NOV22	mg/L	2	<2	NSS	20	100	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover (%	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0514-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0514-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	L	CS/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recovery	/ Limits
						(%)	Recovery	(%)	Recovery	(%)
							(%)	Low	High	(%)	Low	High
рН	EWL0559-NOV22	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0266-NOV22	mg/L	0.002	<0.002	4	10	104	80	120	86	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (۹	y Limits 6)	Spike Recovery	Recover (%	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0512-NOV22	mg/L	0.0001	<0.0001	NSS	30	96	60	140	NSS	60	140
Total												

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0495-NOV22	mg/L	0.002	< 0.002	NSS	30	120	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0495-NOV22	mg/L	0.002	< 0.002	NSS	30	104	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (۹	y Limits 6)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0594-NOV22	mg/L	2	< 2	0	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits %)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0256-NOV22	as N mg/L	0.5	<0.5	ND	10	101	90	110	104	75	125

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	ıtrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover (%	y Limits ໌)
						(70)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	95	50	140
1,2-Dichlorobenzene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	101	60	130	96	50	140
1,4-Dichlorobenzene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	101	60	130	95	50	140
Benzene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	99	50	140
Chloroform	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	97	50	140
cis-1,2-Dichloroethene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	98	50	140
Ethylbenzene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	104	60	130	98	50	140
m-p-xylene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	103	60	130	96	50	140
Methyl ethyl ketone	GCM0441-NOV22	mg/L	0.02	<0.02	ND	30	99	50	140	93	50	140
Methylene Chloride	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	97	50	140
o-xylene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	97	50	140
Styrene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	105	60	130	98	50	140
Tetrachloroethylene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	97	50	140
(perchloroethylene)												
Toluene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	98	50	140
trans-1,3-Dichloropropene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	96	50	140
Trichloroethylene	GCM0441-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	97	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

is tests c Uvoc C Uvoc C Uvoc C Uvoc C OMMENT: C OMMENT: C Uvoc C Uvoc	Sewer Use: Jurning Specify pkg: General Extended B B B<		Pesticides Organochlorine or specify other	3 B	F1-F4 only no BTEX	F1-F4 + BTEX	SVOCs all incl PAHs, ABNs, CPs	PAHs only	ICP metals plus B(HWS-soil only) Hg, CrVI	Metals & Inorganics incl CrVI, CN, Hg pH, (B(HWS), EC, SAR-soll) (Cl, Na-water)	Field Filtered (Y/N)	X Storm Municipality シッチトル イル	Signatu		DATE SAMPLED	TIFICATION	able 2 Ind able 3 . Ag soil Volume	1 1 1 2 2 2 3 3 3 3 4 4 5 5 5 5 6 6 7 7 7 7 7 7 8 8 9 9
PTCLP	se specify) SPL		Pest	- 00	HC		PC F	VC		W	aw:	Sewer By-L	n TAT)	ations: 58 (3 Day m	Reg 347/5	Park Soil Texture:	able 1 Res	
		ED	QUEST	SRE	LYS	ANA	5	ev		M &					Dipor Board	0 Reg 406/19	O Reg 153/04	
CUSTODY	G WATER CHAIN OF	BLE) WATER SAMP VITH SGS DRINKIN	(ING (POTA		*NOT				ate:	ify Due D	Spec	deng. ca	rounde	ten a o	Email: S Das	unded eng. Ci	1: Utren Dar	Ema
ends: TAT begins next business d	after 6pm or on week	Samples received ys 3 Days PRIOR TO SUBM	12 Day	1 Day	SGS R	Apply): Y WITH	as May , ASIBILIT	I Charg JSH FE	FIRM R	H TAT (A ASE CON	PLE				Address:		<u>e</u>	Phor Fax:
ude statutory holidays & weekend:	n business days (exclu	(IAI) REQUIRED TAT's are quoted in	UND TIME	KNARO	-		<u>»</u>	(5-7day	ılar TAT						Address.		Soo. 1 Court Jun	Audi
Ston Rol. Pickerin	110:10:15 King	Site Location/	UND TIME	RNARO	=		1	8	9	ect #:	Proje				Contact:	27	act Olympic	Addi
5	2007	P.O. #:					e e	5	ر ۱	ation #:	Quo		rmation)	Report Info	Company:	Engineesing	Dany: Grounded	Com
*CH-40406-V	LAB LIMS			Ļ			veceibi (le opoir i	omper atte			NO	IFORMAT	NVOICE IN	1	ORMATION	REPORT INF	
		•	A	7)		nt: Yes	ent Prese	- ooling Ag				By (signatu Seal Presen Seal Intact:	Receivec Custody Custody	sk	121 2 (mm/dd/y	ved By:	Rece Rece
Page 1 of			ALC: NUMBER		-0361	: 519-672	8060 Fax	877-848	Foll Free	-672-4500	8 Phone: 519	ON, NOE 23	urt, London,	nsortium Co	- London: 657 Co		2	

APPENDIX F

	SHORT TE	RM	- P1 - PERMEABLE	SHORING - RAFT	
Excavation D	imensions [m]			Rainfall Data	
N-S	68		Year	2	100
E-W	219		Hour	3	12
Area (m2)	14892		Depth (mm)	25	94
Perimeter (m)	574		Depth (m)	0.025	0.094
					- -
S	Section		Flow [m3/day]	Length [m]	Volume [L/day]
	Base		1.783	219	390,477
	Sides		0.052892	574	30,360
	Total				420,837
Factor of	of Safety	3.0			1,262,511
	_				
Storm Events			Summary	L/day	L/min
2 Year [L/day]	100 Year [L/day]		Groundwater	1,265,000	878.5
372,300	1,400,000		Rainfall	373,000	259.0
			Total	1,638,000	1,137.5

	L	ONG TERM - P1- R	AFT	
Excavation Di	imensions [m]		Rainfall Data	
N-S	68	Year	2	100
E-W	219	Hour	3	12
Area (m2)	14892	Depth (mm)	25	94
Perimeter (m)	574	Depth (m)	0.025	0.094
S	ection	Flow [m3/day]	Length [m]	Volume [L/day]
	Base	0	219	-
	Sides	0	574	-
	Total			-
Factor o	of Safety 3.0			-
Infiltratio	on [L/day]	Summary	L/day	L/min
	19027.5	Groundwater	-	-
		Infiltration	20,000	13.9
		Total	20,000	13.9

ST - P1 - PE	RMEABLE SHORIN	G - I	PILE CAPS & GRAD	E BEAMS/ SPREA	D FOOTINGS
Excavation Di	imensions [m]			Rainfall Data	
N-S	68		Year	2	100
E-W	219		Hour	3	12
Area (m2)	14892		Depth (mm)	25	94
Perimeter (m)	574		Depth (m)	0.025	0.094
	·				
S	ection		Flow [m3/day]	Length [m]	Volume [L/day]
	Base		1.2768E-12	219	0
	Sides		2.4597E-13	574	0
	Total				0
Factor of	of Safety	3.0			0
Storm Events			Summary	L/day	L/min
2 Year [L/day]	100 Year [L/day]		Groundwater	5,000	3.5
372,300	1,400,000		Rainfall	373,000	259.0
			Total	378,000	262.5

LT - P1 - PILE CAPS & GRADE BEAMS/ SPREAD FOOTINGS													
Excavation Di	imensions [m]	Rainfall Data											
N-S	68	Year	2	100									
E-W	219	Hour	3	12									
Area (m2)	14892	Depth (mm)	25	94									
Perimeter (m)	574	Depth (m)	0.025	0.094									
S	ection	Flow [m3/day]	Length [m]	Volume [L/day]									
	Base	0	219	-									
	Sides	0	574	-									
	Total			-									
Factor of	of Safety 3.0			-									
Infiltratio	on [L/day]	Summary	L/day	L/min									
19027.5		Groundwater	-	-									
		Infiltration	20,000	13.9									
		Total	20,000	13.9									

APPENDIX G

TRSPA WATER BALANCE TOOL

Water Balance - 1095 Kingston Rd.			Water Balance	e - 1095 K	Kingston Rd.					
1. Climate Information				5. Annual Water Balan	ce Before Build	ing Additions				
Precipitation	872 mm/a	0.87 m/a*		Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Evaporation (m ³)	Infiltration (m ³)	Run-Off (m ³)
Evapotranspiration Water Surplus	<u> </u>	0.37 m/a* 0.50 m/a		Building (entire site)	8,460	7,377	-	-	-	7,377
2. Infiltration Rates				Hard Surface Paving	11,930	10,403	-	-	-	10,403
				Landscape Area (entire site)	585	510	218	-	205	88
Table 2 Approach - Infiltration Factors Topography - (Flat land, rolling land, hilly la	and) 0.3 *			(chure one)						
Soil - (Tight impervious clay, etc) Cover - (Cultivated lands, woodland)	0.3 * 0.1 *			TOTAL	20,975	18,290	218	0	205	17,868
· · · ·	TOTAL: 0.7			6. Annual Water Balan	ce After Buildin	g Additions				
Infiltration (Infiltration Factor x Water Surp	plus) 350 mm/a	0.35 m/a		Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Evaporation (m ³)	Infiltration (m ³)	Run-Off (m ³)
Run-off (Water Surplus - Infiltration)	150 mm/a	0.15 m/a		Building (entire site)	10,260	8,947	-	-	-	8,947
Table 3 Approach - Typical Recharge Rate	es			Hard Surface Paving	3,230	2,817	-	-	-	2,817
coarse sand and gravel fine to medium sand	250+ mm/a* 200 - 250 mm/a*			Landscape Area (entire site)	7,485	6,527	2,784	-	2,620	1,123
silty sand to sandy silt	150 - 200 mm/a *			(
clayey silt	125-150 mm/a* 100-125 mm/a*			TOTAL	20,975	18,290	2,784	0	2,620	12,886
clay	< 100 mm/a *						•			
The site development area is underlain by	cohesionless till.			7. Comparison of Pre-	Development (b	efore buidling addit	ions) and Post Developmen	t (after building addi	tions)	I
Based on the above, the recharge rate is 115 mm/a		0.115 m/a			Precipitation (m ³)	Evapotranspiration (m ³)	Evaporation (m ³)	Infiltration (m ³)	Run-Off (m ³)	
	with runoff of	385 mm/a	0.385 m/a	Pre-Develop Post-Develop	ment ment	18,290 18,290	218 2,784	-	205 2,620	17,868 12,886
3. Property Statistics Pre-development										
Area Covered by Existing Building	8460 m ²	0.85 ha		8. Requirement for Infi	Itration of Roof	Runoff				
Area Covered by Existing Hard Surface Pa	wing 11,930 m ²	1.19 ha		Volume of roof (building additions) run-off captured (90%) 8,052						
Area Covered by Existing Landscaped area	a <u>585</u> m ²	0.06 ha		Volume of post-develo	pment infiltratio	n without roof run-of	ff			2,620
4. Property Statistics Post developmen	TOTAL 20,975 m ²	2.10 ha		Volume of roof run-off	required to mat	ch pre-development	infiltration rates			0
Area Covered by Building with Addition	10.260 m ²	1.02 ba		Percentage of roof run-	off (building ad	ditions roof) required	d to match pre-development	infiltration		0%
Area Covered by Building with Additions	3.230 m ²	0.32 ha								
Area Covered by Landscaped Area	7,485 m ²	0.75 ha								
	TOTAL: 20,975 m ²	2.10 ha								
*Based on published information										

APPENDIX H

1095 Kingston Rd., Pickering

May Not be Reproduced without Permission. THIS IS NOT A PLAN OF SURVEY. Map Created: 2/20/2025 Map Center: 43.82747 N, -79.09876 W